
1

2

3

CHAPTER 4: E-kones Experience Architecture .. 5

Application Components .. 7

IstlContainer ... 7

IstlLayout .. 7

IstlLabel .. 7

IstlComboBox... 7

IstlMenuItem .. 9

IstlPopUp .. 11

IstlRateItem .. 11

Calendar Component Architecture ... 13

istlMap Component Architecture ... 15

Interaction with MAP container of istlMap Component 17

Markers on Map ... 17

Threads ... 18

Algorithms for Map calculations .. 20

Google Maps Communication Component .. 23

GPS Component ... 25

Application Data Management ... 27

Device File System Access .. 27

Data Access From E-kones Service ... 27

XML Parser .. 34

Example of usage by the application. ... 36

CHAPTER 5: Use Case Scenario for E-kones Experience 38

Connecting to e-kones Service ... 38

Package Selection ... 39

Personal User Information .. 40

Other Users information that are registered to the same package 40

Calendar Use .. 41

Map Use.. 47

CHAPTER 6: Development Cycles and Problems .. 51

APPENDIX .. 53

Test tool for XML Parser ... 53

4

GPS Tool .. 54

5

CHAPTER 4

E-kones Experience Architecture

This study examines the application support for the user that have bought a tourism

package from the E-kones service, and now he/she experiences that package. That’s

why the application named “E-kones Experience”.

This study took in account the specific characteristics of a portable device (small

screen size, limited memory) and the effort concentrated into an application that is

more to desktop standards rather in mobile standards. Therefore were developed

interface components that can simulate that behavior. The result was a hybrid

application which in some parts utilizes good techniques from mobile standards (like

central menu) and in some others tries to offer components that are common in

classical desktop interfaces (combobox, popup, menus etc).

For the application needs were developed the next components

 XML Parser (Reader)

 Custom Components (MenuItem, ComboBox, PopUp, RateItem,Container)

 Calendar

 Map

The application has been build around two major components The Calendar and

the Map, with the rest to provide support to the major components. We could say that

the Calendar object has the “Time” perspective for the user in the package, while the

“Map” object has the spatial. In the next diagram (image 4.1) it is presented the

architecture of the final prototype version.

6

image 4.1 Application Architecture in the final prototype version.

7

Application Components

 IstlContainer

 IstlLayout

 IstlComboBox

 IstlMenuItem

 IstlLabel

 IstlPopUp

 IstlRateItem

IstlContainer

istlContainer Component extends the LWUIT container. The only difference

with LWUIT Container is that the istlContainer can have ActionListeners.

IstlContainer was developed in order to receive “pen –touch screen” events, which are

vital in order to send and receive the pen position on the screen, it has two more

methods.

Return type Method name Usage

int getXcor() Returns the X screen coordinate

int getYcor() Returns the Y screen coordinate

The istlContainer is used by the Application mainly in istlMap component.

IstlLayout

The layout manager is responsible for positioning other components in the

user’s desired position, with the use of 2 methods setX() and setY(). The istlLayout

layout manager is widely used by the application for putting most of the components

on their containers. Mainly used by the istlMap Componet where permits the

positioning of the markers in the desired user’s click position.

IstlLabel

The istlLabel is a hybrid component that came as a result by putting together

elements from the Button component and from the label component, and extends the

LWUIT label.

Return type Method name Usage

int getXcor() Returns the X screen

coordinate

int getYcor() Returns the Y screen

coordinate

void setLabelid(int lid) Assigns users id value

int getLabelId() Returns user’s id value

IstlComboBox

This component extends the LWUIT Container and it is implemented with the

usage of two already existed components. Diagrams (image 4.2 and 4.3) present its

architecture.

8

istlComboBox component, in first diagram (image 4.2) it’s the component itself,

in the second diagram (image 4.3) is the architecture of the deployed part that appears

when the arrow button is pressed .

In this version the total amount of elements that are appearing on screen at a

time is locked at 4, which isn’t mutable with some method. Despite that there is a

scroll bar that enables when detects more than 4 components.

In order to construct an istlcombobx a model class is used, which holds the

object of every selection, this class recognizes automatically if the selection is image,

Event Listener

Every time that icon is pressed determines the component’s position

on screen and creates a container with the presentation data but onto the

Top level container Form, so that it ensures that will be on top of every

other component.

This component considered to be flexible cause if it determines that is

on the screen bottom it expands with top direction.

Container

istlLabel

Icon Image
istlLabel String Text istlLabel

Icon Image

Image 4.2 General architecture of istlComboBox component.

Items Container Item Container 1

istlLabel

Icon Image
istlLabel

String Text

istlLabel

Icon Image

Item Container 2

Item Container last

istlLabel Icon

Image

Image 4.3 General architecture of istlComboBox component in deployed state

9

text or both. Providing the ability of having selections of different types in the same

istlcombobox

usage

Vector mpt = new Vector();

istlComboModelItem cmbi = new

istlComboModelItem(st.getMapTypeHybridIco(),"Hybrid");

mpt.addElement(cmbi);

cmbi = new istlComboModelItem(st.getMapTypeMobileIco(),"Mobile");

mpt.addElement(cmbi);

cmbi = new

istlComboModelItem(st.getMapTypeSatteliteIco(),"Satellite");

mpt.addElement(cmbi);

cmbi = new istlComboModelItem(st.getMapTypeTerrainIco(),"Terrain");

mpt.addElement(cmbi);

maptypes = new istlComboBox(mpt);

maptypes.setDefaultIcon(st.getMapTypeIco());

The code above creates the istlcombobx for the map

type selection (image 4.4).

A new vector is constructed with the name mpt which

will contains items of istlComboModelItem type, each item

of those will be a selection for the istlcombobox in this case

each selection will consist of an image and a title. After an

object of istlcomboBox is created with maptypes name and

with argument that Vector (mpt) (new istlComboBox(mpt);), also with the method

(.setDefaultIcon(st.getMapTypeIco());) an image is given as the default.

After, with the usage of an ActionListener on a button we can take the selected

value of the maptypes stlComboBox that we previously create, as appears in the

following part of code.

apply.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent evt) {

maptypes.getSelectedItem();

 }

 });

This part of code assigns an ActionListener on Apply button of the Map

Configuration form (will be examined later). Each time that the Apply button is

pressed the istlComboBox return the selected value by using the method
.getSelectedItem();

IstlMenuItem

This component extends the LWUIT container and it is build with the use of

two existing components. Its architecture is a modified version of istlComboBox, but

having similar characteristics and properties.

Εικόνα 4.4

istlComboBox

10

A difference with istlComboBox is in the

model class. In order to construct an IstlMenuItem it

is used a model class, that contains the item of each

choice, this class can automatically determines if the

selection item is image, text or both, providing the

ability of having an istlMenuItem with a combination

of selections in the same istlMenuItem, in addition in

order to support a second depth level it can accept

another istlMenuItem as argument. In order this to

happen the istlMenuItem that should go as a 2
nd

 level must build first, and then must

be added to the Vector as element, finally the Vector with the elements must go as an

argument to the 1
st
 level menuitem. Such item is the istlMenuItem that exists in

istlMap component (image 4.5). Below we examine a code sample of how this item

created.

Usage

Vector mpt = new Vector();

istlMenuModelItem cmbi = new istlMenuModelItem("Hide");

mpt.addElement(cmbi);

cmbi = new istlMenuModelItem(st.getNotationAddIco(),"Add");

mpt.addElement(cmbi);

cmbi = new istlMenuModelItem(st.getNotationMoveIco(),"Move");

mpt.addElement(cmbi);

cmbi = new istlMenuModelItem(st.getNotationRemoveIco(),"Remove");

mpt.addElement(cmbi);

sub_menu = new istlMenuItem("Notations",mpt);

sub_menu.setDefaultIcon(st.getNotationPropertiesIco());

sub_menu.getMenuitemTitle(0).addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

istlLabel current = (istlLabel) evt.getSource();

sub_menu.getMenuItems().setVisible(false);

menu.getMenuItems().setVisible(false);

t.getComponentForm().removeComponent(sub_menu.getMenuItems());

t.getComponentForm().removeComponent(menu.getMenuItems());

for(int k=0;k<t.getComponentForm().getComponentCount();k++)

{

t.getComponentForm().getComponentAt(k).repaint();

t.getComponentForm().getComponentAt(k).refreshTheme();

}

}

});

The construction technique is similar with the istlComboBox component,

unfortunately due to a problem which still remains unsolved (due to lack of time) it is

necessary that the programmers should take care of disappearing the specific part of

each selection (like in the previous code sample).

Vector zmt = new Vector();

istlMenuModelItem cmbr;

cmbr = new istlMenuModelItem("Gps Config");

zmt.addElement(cmbr);

cmbr = new istlMenuModelItem(sub_menu);

image4.5 istlMenuTiem

11

cmbr = new istlMenuModelItem("Exit");

zmt.addElement(cmbr);

menu = new istlMenuItem("Options",zmt);

After all the menus are added to the central menu named menu.

IstlPopUp

It is a simplified version of the istlMenuItem with one level

depth. It can be constructed with the same way as an

istlMenuItem. Image 4.6 shows an istlPopUp with selections for

Bussiness Partners.

IstlRateItem

This component in contrast with all the previous doesn’t try to simulate

behavior from desktop computers interfaces, but it is a total new component by itself,

therefore there was effort in order this component to have maximum flexibility and

portability.

Diagram of image 4.7 shows

the basic architecture of the

istlRate Component. The logic is

simple, an istlContainer is made

with symbols that represents

rating. There is a constructor that

needs a number of rate items as

argument (example 5 or 8), the default rate symbol is the star , but also a variety

of methods are provided in order to add custom symbols, distances between symbols,

and orientation. The istlRate component utilizes methods for identifying

characteristics like screen width and auto fit its rate symbols accordantly.

The following image (image 4.8) has been shot from a supporting application

that was developed for testing and evaluating purposes. In this image are obvious

most of the components characteristics.

Custom rate

Custom rate,

circle symbol

Default rate,

start symbol.

Horizontal

alignment (default)

Vertical alignment

image 4.6

istlPopUp

istlLabel Array istlContainer

image 4.7 istlRateItem Architecture

image 4.8 Testing application for istlRate istlRateItem

12

In previous image are obvious the 3 different user rate images, the alignment

and even the distances between the rate elements.

Usage

istlRate rt = new istlRate(5);

With the usage of the istlRate(5) constructor a 5 star rate item is created, the

argument denotes how many stars the user wants the rate item to have initially. After

the construction of an istlRate with the usage of additional methods the istlRate

component can be modified.

Return type Method name Usage
int getId() Returns the id value

int getRate() Returns the rate

void setAlignmentVertical() Sets vertical alignment

void setCompact(int compact) Sets desired distances between rate

images

void setId(int id) Sets id

void setIstlItemSize(int Asp

ectDimension)

Sets rate image size relatively with

the existing.

void setIstlRateSize(com.sun

.lwuit.geom.Dimension d

)

Sets the rate image size.

void setRate(int no) Sets number of rate icons

void setRateEmptyIcon(com.su

n.lwuit.Image empty)

Sets a custom rate image for empty

state

void setRateFillIcon(com.sun

.lwuit.Image fill)

Sets a custom rate image for full

state.

void setRateStyle(com.sun.lw

uit.plaf.Style ratestyl

e)

Set a style for the istlRate

component.

13

Calendar Component Architecture

The calendar component was created with the intention to offer the “time”

representation of the package to the user, but also to support other miscellaneous

functionalities.

The calendar component (image 4.10) consists of 3 sub-components

(istlDayscal, istlMonthcal, istlYearcal) and a main container named (istlCalendar

which extends the container Form) (image 4.9). The istlCalendar component has a

constructor with 2 arguments, the first argument is a Form type and this cause since

the istlCalandar component is a Form type, in order to link with the rest application

needs an argument of Form type that denotes the source Form which triggers the

Calendar component, the second argument is a Databuilder class argument that holds

the application data which have derived from the e-kone server with package

information.

The sub-components istlDayscal, istlMonthcal,

istlYearcal have specific functionality, therefore the

istlYearcal component (image 4.11) extends the LWUIT

container and its job is to draw the current year with two

buttons for previous / next year shift, similar structure has

the istlMonthcal component (image 4.12) only that the

next / previous shift is for months. The most complex

component of the three is the istlDayscal component

(image 4.13), this component extends the LWUIT

Container like the previous and has a constructor with

three arguments (current month, current year, Databuilder)

but at the same time it consists and creates two separate istlContainer components

,one container named cont_day_header is in charge of draws the header with the days

names, while the second named cont_dayscont is in charge for drawing the days

depending the month and the year, in extend it assigns on every day an

ActionListener. Finally it marks with different color the package days.

Εικόνα 4.10 Calendar

IstlCalendar

IstlDayscal IstlMonthcal IstlYearcal

istlCalendarStyle istlCalendarObjects

Calendar

Form Origin

DataBuilder

Image 4.9 Calendar component architecture.

14

From the previous it is obvious that the istlCalendar component is hardcoded for

the needs of the application.

istlCalendarObjects keeps data for user notes but also do some basic functions

with them. The istlCalendarStyle is a theme class that is responsible for the graphical

elements and appearance of the component.

Τπέσων Χπόνορ

Τπέσων Μήναρ

Μέπερ Εβδομάδαρ

istlLabel Container
Colors and images for

the labels are defined

in istlCalendarStyle

class.

istlYearcal

Image 4.11 istlYearcal sub-component architecture

Image 4.13 istlDayscal sub-component architecture

istlLabel Array Container

istlLabel Array
istlContainer

The background image

changes depending the

season.

Container

istlDayscal

Μέπερ Μήνα με

καηάηαξη εβδομάδαρ

istlLabel Container

 In case that is the 11
th

or the 1
st
 month the

shift buttons images

are changed

accordantly to and

, and month shift is

disabled.

istlMonthcal

Image 4.12 istlMonthcal sub-component architecture

istlCalendar

istlDayscal

istlMonthcal

istlYearcal

Image 4.14 The general architecture with the 3 sub-

components combined.

15

istlMap Component Architecture

The istlMap component offers spatial representation of the package (image

4.15). The term “spatial” representation means all the information like the Business

Partners, other users of the package, and personal information. All these information

in order to have the spatial meaning are appearing on a map, which derived from the

Static Google Maps service. Also the coordinates of user position are displayed, but

not graphically represented.

The istlMap component extends the form

component, and has two constructors, one with

arguments a component of form type and a Vector data

type that holds the business partner data, while the other

constructor has in addition a UserActivityData object

that has user information. The reason for the 2 different

constructors is a J9 limitation which will be described at

the end.

 The istlMap component consists of two

istlContainers sub-components (image 4.16), one named

panel, is on the upper of the screen and includes a two level istlMenuItem as well an

istlLabel component in which appears user’s position (image 4.17). The other named

map is used as the container on which are placed the map and the marks (user

markers, ekones users’ markers and e-kones markers) (image 4.18) and will analyzed

in a next chapter.

Image 4.15 istlMap

Form Origin

Vector

Form Origin

Vector

UserActivityData

Map Panel

GPS

EkComponents_Style

Gps_Style

Ekones_Style

Maps

MapFunctions

Image 4.16 istlMap Architecture

16

In total the istlMap component is a complex component due to the interaction

abilities that offers, like marker insertion, deletion, move, information projection for

the business partners, and tracking the users movement that are registered in the same

package. Despite these functionalities this component’s complexity is raised more by

other algorithms that are executed in order to support the previous, algorithms like the

map functions algorithm, and 2 threads that are running for the periodically update of

the user position and the other users position on the map are raising the complexity.

The previous make obvious that the istlMap component is hardcoded without

generic character.

istlContainer

istlLabel

Map

Map Navigation

Controls

image 4.18 map sub-component arhitecture

istlLabel

Container

istlMenuItem (2 Level)

Panel

image 4.17 panel subcomponent architecture.

17

Interaction with MAP container of istlMap Component

The map component is an istlContainer type, as previously described the

istlContainer component can identify “pen” events and with appropriate methods

returns the screen coordinates where the event occurred.

The only event that the map container handles is press and drag events on its

area. A press event in the place that occurred creates an istlPopUp component offering

options to the user, while the drag event causes a user marker to move in an other

position on screen.

Markers on Map

The application provides 3 types of markers to the user (user markers, e-kones

markers and user position markers). Those markers aren’t produced in a dynamic

way, rather than they created when the Map component initializes. The number of e-

kones markers that are representing a business partner location are derived from the

total number of business partner in the XML that the application receives from the e-

kones server, after an ActionListener is assigned to each of the marker for each

business partner, finally each marker is placed on the map depending the geographic

position that each business partner has registered to e-kones service (and send through

the XML to the application). The sum of users positions markers that are registered in

the same package is computed again from the appropriate XML in a similar way as

the business partners markers. The sum of user markers cannot be defined from the

beginning, neither can be infinite (for performance reasons), there should be a max

value for the total number of user markers that the user can place on map therefore the

application assumes that the total number for user markers should be equal to the sum

of business partners. In user markers an ActionListener is assigned that generates an

istlPopUp component with appropriate selections. User markers are placed out of

screen, not visible and disabled. In fact when the user inserts a marker, the application

enables that marker and positions it in the map position that a press pen event occurs,

in similar way when a user deletes a marker the application disables it and move it off

screen.

IstlMap

Panel

Map

image 4.19 istlMap general architecture with sub-components combined

18

Each marker object is an istlLabel component which generates its own istPopUp

when clicked and complies to its own limitation (example the user can’t delete an e-

kones marker).

Threads

The istlMap component starts executing two threads after its initialization. One

thread is responsible for the periodically update of the application with the users

position that are registered in the same package. Every 10000 millisecond the thread

updates from the e-kones server with the new users position and place the users

positions markers in the appropriate position on map. The second thread runs every

1000 millisecond and updates the component with the new user geographical position.

Please note that the service for the users positions hasn’t been created therefore

the positions that are appearing on the map in this version are derived from a server

XML which is stored in a file and not produced dynamically (realtime) from the

service. The creation of a service like that in the frame of this project was out of the

scope. Despite that a possible architecture for such a service is shown in the following

diagram (image 4.20).

In this theoretical data exchange model between server and user the creation of

a third thread is required in order the user to send his location to the server. The server

after the desired package selection from the user, is sending the package information

(like in this version) and the two communication ports on which the application will

send and receive user position information. During the initialization of the istlMap

components the two threads responsible for user position begin to execute, it is logical

that will required different execution times for sending and receiving as well and a

communication protocol for sending service messages which can configure the

execution times in cases like server buffer overflow in order to avoid data loss.

From the server side, when the server receives position data in specific times

will refresh the file with the positions, the refresh could be either in specific times

Package Request

Package Information

XML users port id

in, out

User position
Update XML

User positions XML

excluding sender Update User

Positions on map

Image 4.20 A possible service XML based architecture that could support the exchange in real

time position massages between clients and service.

19

either under a specific case (example, every client has send position update for X

times). The server input must have a quite large buffer in order to catch up and make

I/O operations with minimum error possibility. Also a message protocol should be

established in order to notify the users for occasions of high traffic in order to reduce

the sending rate.

An XML sample that it is used from the application for receiving users positions

without taking in account a traffic configuration protocol is the following.

<users>

 <user id='1'>

 <username>Kotsalomistos</username>

 <last_name>Kotsalis</last_name>

 <first_name>Dimitris</first_name>

 </user>

 <user id='2'>

 <username>Gallactica</username>

 <last_name>Milolidakis</last_name>

 <first_name>Giannis</first_name>

 </user>

 <user id='3'>

 <username>Larisaios</username>

 <last_name>Vellis</last_name>

 <first_name>Giorgos</first_name>

 </user>

 <user id='4'>

 <username>Episimonas</username>

 <last_name>Plemenos</last_name>

 <first_name>Argiris</first_name>

 </user>

</users>

This XML can be modified in order to include traffic configuration messages.

<exchange>

<code>

 <transmition_rate>1</transmition_rate>

</code>

<users>

 <user id='1'>

 <username>Kotsalomistos</username>

 <last_name>Kotsalis</last_name>

 <first_name>Dimitris</first_name>

 </user>

 <user id='2'>

 <username>Gallactica</username>

 <last_name>Milolidakis</last_name>

 <first_name>Giannis</first_name>

 </user>

 <user id='3'>

 <username>Larisaios</username>

 <last_name>Vellis</last_name>

 <first_name>Giorgos</first_name>

 </user>

 <user id='4'>

 <username>Episimonas</username>

 <last_name>Plemenos</last_name>

20

 <first_name>Argiris</first_name>

 </user>

</users>

</exchange>

The XML above has been modified appropriately in order to support system

messages exchange. The XML node <code></code> can hypothetically encapsulates

system messages, in addition the attribute <transmition_rate>

</transmition_rate> which is in the node <code></code> could hold information

related to the transmition rate, a value of 1 like in the example could mean normal

transmition rate, while greater than 1 could have a negative rate factor example a

value of 5 could be a reduce by 50% on the previous transmition rate, and a value of 0

could mean out of order. The application based on these values could send the user

position to the server.

Algorithms for Map calculations

One of the most difficult tasks for this project was the conversion of geographic

coordinates to screen coordinates, with the usage of a map from the Google Maps

Service and the ability of changing the zoom level, resolution and map type.

The Google Maps service is offering maps based on a request map center, with

desired zoom, resolution and type. Given the known screen size, the geographical

position of the business partners (derived from the XML), the geographical position

of the user derived from the GPS system of the device, the appropriate position of

these on the screen must calculated. The container on which the map will be placed

has resolution of 232Χ232 pixels.

The system calculates the center based on the geographical coordinates of the

business partners, and requests from the Google Maps service a map with that center.

With an experimental way was found the mathematical relation between zoom and

resolution.

Resolution Zoom Shift Center Shift Side

128Χ128 17 (max) 0.000689 0.001378

 8 0.000689Χ2
9
 0.001378Χ2

9

 4 0.000689Χ2
13

 0.001378Χ2
13

136Χ136 17 (max) 0.000738 0.001466

 12 0.000738Χ2
4
 0.001466Χ2

4

 8 0.000738Χ2
9
 0.001466Χ2

9

 4 0.000738Χ2
13

 0.001466Χ2
13

144Χ144 17 (max) 0.000769 0.001538

 16 0.000769Χ2
1
 0.001538Χ2

1

 12 0.000769Χ2
4
 0.001538Χ2

4

 8 0.000769Χ2
9
 0.001538Χ2

9

152Χ152 17 (max) 0.000819 0.001638

 16 0.000819Χ2
1
 0.001638Χ2

1

 12 0.000819Χ2
4
 0.001638Χ2

4

160Χ160 17 (max) 0.0008595 0.001719

 16 0.0008595Χ2
1
 0.001719Χ2

1

21

 12 0.0008595Χ2
4
 0.001719Χ2

4

168Χ168 17 (max) 0.000903 0.001806

 16 0.000903Χ2
1
 0.001806Χ2

1

 12 0.000903Χ2
4
 0.001806Χ2

4

176Χ176 17 (max) 0.000942 0.001884

 16 0.000942Χ2
1
 0.001884Χ2

1

 12 0.000942Χ2
4
 0.001844Χ2

4

184Χ184 17 (max) 0.000988 0.001976

 12 0.000988Χ2
4
 0.001976Χ2

4

 8 0.000988Χ2
9
 0.001976Χ2

9

 4 0.000988Χ2
13

 0.001976Χ2
13

192Χ192 17 (max) 0.001031 0.002062

 8 0.001031Χ2
9
 0.002062Χ2

9

 4 0.001031Χ2
13

 0.002062Χ2
13

232Χ232 17 (max) 0.00124 0.00248

 12 0.00124Χ2
4
 0.00248Χ2

4

In the table above the experimental results data that relate the zoom level with

resolution are presented. The 1
st
 table column denotes the map resolution, the 2

nd
 the

zoom level, while the third column the shift factor in degrees that is required to

retrieve a map with a center the side of the current, the 4
th

 column denotes the

required shift in degrees in order to take a whole new map which is the next of the

current (as it’s logical this is the double value of the 3
rd

 column). The above was

experimental results and may contain a big possibility of error.

The fact worth mentioning is that there is a mathematical relation between a

specific resolution and zoom level. Unfortunately as it is obvious there is no relation

between different resolutions and zoom levels. With a result the calculation of a new

marker position to be problematic in cases where the user switches from one

resolution to another.

Therefore can be algorithm that calculates the position on the map given a

specific resolution.

double pxf;

 double long_dif,lat_dif;

 int zoom_dif = Math.abs(16-zoom);

 int zoommf=2;

 for(int x=0;x<zoom_dif;x++)

 {

 zoommf=zoommf*2;

 }

 cfs = 0.00248*zoommf;

 cfc = 0.00124*zoommf;

 pxf=cfs/232;

 long_dif=cen_long+cfc;

 lat_dif=cen_lat+cfc;

 mark_long = (int) ((long_dif-longt)/ pxf);

 mark_lat = (int) ((lat_dif-lat) / pxf);

22

Except the limit between variable resolution and zoom level a number of other

problems occurred mainly cause of LWUIT and J9 incompatibility. Therefore the

resolution for map requests locked to a 144X144 resolution, with 12 zoom level, and

mobile maptype, which are safe configurations with the fewer problems.

Above the map there are for arrows in each side which enable the map scroll

with the usage of a similar algorithm. Unfortunately a problem with calculation of the

new marker position arises which make the use of these arrows a bit buggy.

An other algorithm is the algorithm which calculates the distance between business

partners. The algorithm is based on Haversine formula.

R = earth’s radius (mean radius = 6,371km)

Δlat = lat2− lat1

Δlong = long2− long1

a = sin²(Δlat/2) + cos(lat1).cos(lat2).sin²(Δlong/2)

c = 2.atan2(√a, √(1−a))

d = R.c

A method was created that executes the required operations for the algorithm.

Because the Math class of the Midp doesn’t support all the required mathematical

public double

MapUpScroll(double clong)

 {

 int zoom_dif =

Math.abs(17-zoom);

 int zoommf=1;

 for(int

x=0;x<zoom_dif;x++)

 {

 zoommf=zoommf*2;

 }

 cfc = 0.00124*zoommf;

 cen_long=clong+(cfc/2);

 return cen_long;

 }

public double

MapDownScroll(double clong)

 {

 int zoom_dif =

Math.abs(17-zoom);

 int zoommf=1;

 for(int

x=0;x<zoom_dif;x++)

 {

 zoommf=zoommf*2;

 }

 cfc = 0.00124*zoommf;

 cen_long=clong-(cfc/2);

 return cen_long;

 }

 public double

MapLeftScroll(double clat)

 {

 int zoom_dif =

Math.abs(17-zoom);

 int zoommf=1;

 for(int

x=0;x<zoom_dif;x++)

 {

 zoommf=zoommf*2;

 }

 cfc = 0.00124*zoommf;

 cen_lat=clat-(cfc/2);

 return cen_lat;

 }

 public double

MapRightScroll(double clat)

 {

 int zoom_dif =

Math.abs(17-zoom);

 int zoommf=1;

 for(int

x=0;x<zoom_dif;x++)

 {

 zoommf=zoommf*2;

 }

 cfc = 0.00124*zoommf;

 cen_lat= clat+(cfc/2);

 return cen_lat;

 }

23

functions a new class created named istlMath which offers the appropriate functions

atan, atan2, toRad and Round

public double MarkerDistanceCalculation(double slat,double

slong,double dlat,double dlong)

 {

 double R = 6371; // km

 double dLat = istlMath.toRad(slat-dlat);

 double dLon = istlMath.toRad(slong-dlong);

 double a = Math.sin(dLat/2) * Math.sin(dLat/2)

+Math.cos(istlMath.toRad(dlat)) * Math.cos(istlMath.toRad(slat))

*Math.sin(dLon/2) * Math.sin(dLon/2);

 double c = 2 * istlMath.atan2(Math.sqrt(a), Math.sqrt(1-

a));

 double d = R * c;

 return istlMath.Round(d);

 }

Google Maps Communication Component

In order to support the Google Maps service a class was created named Map.

That class uses an “empty” constructor.

public Maps()

 {

 }

With the usage of methods a connection is established with the Static Google

Maps service and a map is retrieved. The class has method that connects with the

service using the http protocol. In order to be a successful connection and map

retrieval some more information are required, like the service url, resolution, zoom

level, map type, those functionalities are handled by extra methods. An example for

connection with the Google Maps service is the following.

mp = new Maps();

mp.setMapZoom(cfg.getZoom());

mp.setMapXdimension(cfg.getResolution());

mp.setMapYdimension(cfg.getResolution());

mp.setMapProfile(cfg.getMapType());

mp.setMapLon(rd[0]);

mp.setMapLat(rd[1]);

mp.setMapURL();

In the previous code sample an instance of the class Maps is created with the

name mp. In this example a class named GpsConfig appeared, from which return

values from its methods are used as arguments for the methods of the mp instance, as

shown above.

cfg = new GpsConfig();

cfg.setMapType("mobile");

cfg.setResolution(144);

cfg.setZoom(12);

24

The GpsConfig class keeps user values for the desired map (In the final

prototype version due to the reason motioned before that class hasn’t much usage).

The map properties have been sent, now the final step is to actually connect

with the service and retrieve the map.

Image image;

 try {

 image = Image.createImage(mp.mapConnect(), 0,

mp.mapConnect().length);

 } catch (Exception ex) {

 istlmapholder.setText(ex.getMessage());

 }

The connection has been establiehd and a map has been retrieved, the map is

placed inside the container as explained before and shown to the user.

Class Maps methods

Return type Method name usage

com.sun.lwuit.Im

age
getMapImage() Return the image of the map

java.lang.String getMapUrl() Return google maps url

byte[] mapConnect() Connects with the service and

returns the map.

void setMapDimensions(com.su

n.lwuit.geom.Rectangle

d)

Sets map resolution

void setMapFormat(java.lang.

String format)

Sets the map format (.png8,

.png24).

void setMapKey(java.lang.Str

ing key)

Sets users unique key, given by the

google maps service

void setMapLat(double lat) Sets the desires latitude to use a

center for the map

void setMapLon(double lon) Sets the desires longtitude to use a

center for the map

void setMapProfile(java.lang

.String profile)

Sets the desired map type

void setMapURL()

void setMapURL(java.lang.Str

ing url)

void setMapXdimension(int x) Sets the map resolution (x

dimension)

void setMapYdimension(int y) Sets the map resolution

(ydimension)

void setMapZoom(int zoom) Sets the desired zoom level

25

GPS Component

The application uses the NMEA protocol in order to receive data form GPS

chipset on the device (SirfStarIII). The communication with the GPS chipset is done

through an appropriate class that has been created, named GPS. The application uses a

data class named GpsPosData in order to hold the GPS data, and a class named GPS

which is responsible for reading massages from the port.

At this point must be noted that a full GPS application should use every GPS

message key that the GPS chip sends, from simplicity reasons this application utilizes

only messages with the $GPGGA message key which holds position data.

The architecture that is responsible for reading GPS messages from the device is

shown below (image 4.21).

An alternative implementation that could support more messages could be like

the following (image 4.22).

Message Key Message Type
GGA Time, position and fix type data.

GLL Latitude, longitude, UTC time of position fix and status.

GSA GPS receiver operating mode, satellites used in the position solution,

and DOP values.

GSV The number of GPS satellites in view satellite ID numbers, elevation,

azimuth, and SNR values.

MSS Signal-to-noise ratio, signal strength, frequency, and bit rate from a

radio-beacon receiver.

RMC Time, date, position, course and speed data.

VTG Course and speed information relative to the ground.

ZDA PPS timing message (synchronized to PPS).

150 OK to send message.

Gps GpsPosData

Gps Position Data

(Longtitude/Latitude)

image 4.21 Component architecture that communicates with the GPS

26

The architecture shown above utilizes in full the GPS chipset, along with an

appropriate classes that could carry the NMEA message data.

In order the GPS class to function first needs to initializes.

GPS gp = new GPS();

When an instance of the GPS class is created, automatically connects with the

com4 port trying to read messages with the $GPGGA message id, which are having

position information. After a GpsPosData object is constructed and with appropriate

methods it is filled with data. The application can retrieve the data, with the following

way.

gp.RetreiveGpsData();

 GPSPosData gpd =gp.getGPSPosData();

Now the application with the appropriate methods that the GpsPosData class

provides can handle the data.

Return type Method name usage

java.lang.String getGps() Return a full unprocessed message

line

java.lang.String getKey() Return the message key.

java.lang.String getLat() Returns the latitude

java.lang.String getLong() Returns the longitude

int getNoOfSatellates() Returns numbers of satellites

covering the area

double getTime() Returns time

boolean isValid()

void setGps(java.lang.String

 gps)

void setKey(java.lang.String

Gps GPGGA

GPGLL

GPGSA

GPGSV

GPMSS

GPVTG

GPRMC

GPZDA

image 4.22 An alternative GPS component architecture that could utilize all of the GPS

27

 key)

void setLat(double Lat,

java.lang.String Dir2)

void setLong(double Long,

java.lang.String Dir1)

void setNoOfSatellates(int n

oOfSatellates)

void setTime(double time)

void setValid(boolean valid)

In order for the application to have continues stream with position data, a thread

has been created that every 1000 millisecond returns position data.

In e-kones experience application the abilities of this component aren’t well

show, therefore a small application that shows in more complete the abilities of this

component has been created (will examined in the appendix).

Application Data Management

The Application due to its nature (client application for E-kones Application)

demands connectivity with a server through the internet, while it is also required

access on the device file system.

Device File System Access

The application demands the data transfer from form to form, in order to keep

persistent the user data during the runtime but also after the termination. As we’ve

already mention the IBM J9 hasn’t any optional package implementation, in order a

J2ME Midp application to have access on the file System of the device the support of

JSR-75 is required (File Connection – PDA Optional Package).

For applications that demand data storage without JSR-75 support the Midp 2.0

offers the so called “Record Store” (RMS – Record Management System). The RMS

is in a way an internal database that keeps inside the implementation information for

data storage, it has been created and used mainly for storing simple data like scores

for games. This specific way for storing data could serve as a way to store user

preferences up to a degree, but it couldn’t serve the needs for “temporary files” which

this application demands.

The lack of a storing way lead in the creation of “heavy” constructors which are

moving data from a class to an other in order to keep the data persistent. This has as a

result a great performance impact. Even though his trick couldn’t solve the problem,

therefore the application prototype keeps persistent data only between a number of

components.

Data Access From E-kones Service

At the communication part between the server and the application the Midp

offers support for the http protocol. The application uses XML files to communicate

with the server. In order to make the XML access possible an XML parser was

28

created (a small test program that full utilizes and show the abilities of the XML

parser will be described in the Appendix)

The Application uses the following categories of data.

 Packets that the user has registered.

 Data specific related to a package.

 Data for users positions and information.

 Personal User Information.

 Configuration Data (Aren’t fully implemented).

The architecture for the data is presented in the next diagram (image 4.23).

From the diagram above it is obvious that there is a class with a constructor

named DataBuilder which has as argument the url address of the xml file, as well a

mode of operation. Depending the selected operation mode a number of methods are

executed.

The DataBuilder Constructor.

public DataBuilder(String url,int mode)

{

 this.url=url;

 if(mode==1)

 {

 PacketBuilder();

 }

 else if(mode==2)

 {

 UserBuilder();

 }

 else if(mode==3)

 {

 UsersPacketBuilder();

 }

 else if(mode==4)

DataBuilder

Url, Mode

Mode

switch

PacketBuilder

UserBuilder

UserPacketBuilder EkUsersBuilder

EkUserPosBuilder

1

2

3
4

5

image 4.23 Architecture for the application data.

29

 {

 EkUsersBuilder();

 }

 else if(mode==5)

 {

 EkUserPosBuilder();

 }

}

As it is shown the constructor provides no insurance for a mode selection out of

the predefined as well in cases where the user gives a wrong url.

Mode 1, This operation mode enables methods for building classes with

information related to the selected package. The execution code is shown below.
public void PacketBuilder()

{

 Days = new Vector();

 xmcon = new XMLConnect(url);

 CreatePackageDescriptor();

 CreatePackageDays();

 CreatePackageLocations();

 CreatePackageCategories();

 CreatePackageActivities();

 CreatePackageBPartners();

 CreatePackageParameters();

}

 The operation mode is shown in the next diagram (image 4.24).

PacketBuilder

CreatePackageDescriptor

CreatePackageDays

CreatePackageLocations

CreatePackageCategories

CreatePackageActivities

CreatePackageBPartners

CreatePackageParameters

PacketData

DayData

LocationData

CategoryData

ActivitiyData

BPartnerData

ParameterData

Vector

Vector

Vector

Vector

Vector

Vector

Object

image 4.24 Architecture for building classes for an e-kones package

30

Each method that the DataBuilder method executes reads the XML and fills a

data class with the appropriate data. Each method when finishes data reading

produces a data type which contains the data. All of the methods are producing vector

data type except the CreatePackageDescriptor method which produces an object data

type, derived from the data class. This is logical since there can be only one

description for every package, but there can be a lot of activities, business partners

etc.

The final data will have the following form (image 4.25).

Each element in the Vector data

type could be type of

activitydata, bpartnerdata,

categorydata etc, depending the

content data type the Vector has

appropriate name, for example

the Vector data type that has

activitydata as elements and has been created by the CreatePackageActivities, is

named Activities.

Mode 2, This operation mode utilizes method for building classes with

application user information. The execution code is shown below.
public void UserBuilder()

{

 xmcon = new XMLConnect(url);

 CreateUser();

}

The operation mode is shown in the next diagram (image 4.26).

The UserBuilder method has only one method which reads the desired XML

and puts the data in the specific class. When finishes reading it produces a UserData

object which holds the user information.

Mode 3, This operation mode utilizes method for building classes with package

information in which the user has registered. The execution code is shown below.

public void UsersPacketBuilder()

{

 xmcon = new XMLConnect(url);

 CreateUserPackages();

}

Vector

1 2 3 4 ….

Image 4.25 Data model for a packet

Object

UserBuilder

CreateUser

UserData

Image 4.26 Architecture for building information classes for e-kones experience user.

31

The operation mode is shown in the next diagram (image 4.27).

The UsersPacketBuilder method has only one method that reads the XML and

puts the data in the appropriate data class. At the end of reading it creates a Vector

data type that holds package information for every package that the user has

subscribed to.

Mode 4, This operation mode utilizes method for building classes with users

that are registered to the same package. The execution code is shown below.

public void EkUsersBuilder()

{

 xmcon = new XMLConnect(url);

 CreateUsers();

}

The operation mode is shown in the next diagram (image 4.28).

The EkUsersBuilder method utilizes a method that is in charge of reading the

appropriate XML file and put the data in the appropriate data classes. After the

reading the method produces a Vector data type with information for users that are

registered to the same package.

Mode 5, This operation mode utilizes method for building classes with users

positions. The execution code is shown below.

public void EkUserPosBuilder()

{

 xmcon = new XMLConnect(url);

 CreateUserPos();

}

The operation mode is shown in the next diagram (image 4.29).

Vector

UsersPacketBuilder

CreateUserPackages

PacketData

Image 4.27 Architecture for building data classes for packages that the user has subscribed.

Vector

EkUsersBuilder

CreateUsers

EkUsersData

Image 4.28 Architecture for building data classes for the users that are registered at the same e-kones

package

32

The ΕκUsersPosBuilder utilizes a method that reads the XML file and fills with

data the appropriate classes. When the reading is finished it produces a Vector data

type with EkUserPosData as elements and holds every user position.

During the application execution the DataBuilder object works as follows.

DataBuilder upkb;

upkb=new

DataBuilder("http://hwm.armedassault.info/personal/XMLPackageServlet1

.xml",1);

A DataBuilder object is created with the name “upkb”, and arguments the XML

url and the operation mode. The operation mode here is “1” which means that the

method will executes the part responsible for building specific Package information

data classes. After the creation, the application can access the data with the following

way.

Vector v = new Vector();

v = upkb.getPackageDays();

In the example above the getPackageDays() method returns a Vector type object

that will has DayData type as elements, with information for every day of the

package. Each element of the vector can be accessed with the following way.

for(int k=0;k<v.size();k++)

{

DayData dt = new DayData();

dt=v.elementAt(k);

String str = dt.getDescription();

System.out.println(str);

}

In the example above every data that the Vector (named v) data type holds are

read, after each element placed in a DayData class instance named “dt” and a method

retrieves the description for every day of the package.

Methods provided by the DataBuilder class

Return type Method name usage
void EkUserPosBuilder() Central method calls methods for

building users position data classes

Vector

EkUsersPosBuilder

CreateUserPos

EkUserPosData

Image 4.29 Architecture for building data classes with users position information.

33

void EkUsersBuilder() Central method calls methods for

building users information data

classes

java.util.Vector getEkonesUsersData() Return user Data

EkUserPosData getEkonesUsersPositionD

ata()

Returns users position data

java.util.Vector getPackageActivities() Returns package activities data

java.util.Vector getPackageCategories() Returns package categories data

java.util.Vector getPackageDays() Επιζηπέθει ηι ημέπερ ηος πακέηος.

java.util.Vector getPackageLocations() Return package location data

java.util.Vector getPackageParameters() Return package parameter data

java.util.Vector getPackagePartners() Returns package business partner

data

PacketData getPacketDescriptor() Returns package general description

UserData getUserData() Return user info data

java.util.Vector getUserPackages() Returns packages that the user is

registered to.

void PacketBuilder() Central method calls methods for

building packet data classes

void UserBuilder()) Central method calls methods for

building user information data

classes

void UsersPacketBuilder() Central method calls methods for

building users information that are

registered in the same package data

classes

Data Classes.

Data class name Function

ActivityData Holds activity data

BPartnerData Holds Business Partner Data

CategoryData Holds data for package categories

ConfigMapData Hold map data (not used)

DayData Holds data for package days

EkUserPosData Holds data for users position

EkUsersData Holds data for users registered to the same

package

LocationData Holds data for package locations

PacketData Holds data for packets that the user is

registered to.

ParameterData Holds package parameter data

UserData Holds user info data

Each data Class offers different methods, based on its data. All methods in these

data classes are set/get types and isn’t exist any calculation method.

34

XML Parser

A basic component of this application is the XML Parse. The created parser can

read XML files of any kind with a good tolerance on errors. The XML file is read

serially, from start to the end of the file. While parsing it tries to create a tree structure

for easy data access from the higher levels using a vector data type. Due to the way

that this parser is reading data it’s not suitable for very large files. For the

development of the XML parser it was created a small test application (tool) which

will be described at the Appendix. The architecture of the parser is presented in the

following diagram as well with an example (image 4.30).

Image 4.30 XML Parser architecture

Image 4.31 XML file sample

35

3rd Pass

1
st
 Pass

2nd Pass

Final

Εικόνα 4.32 Execution

steps for parsing an

XML document and

convert it into Vector

data type.

36

Example of usage by the application.
xmcon = new XMLConnect(url);

An XMLConnect object is created with a URL of the XML document as

argument.

The following code example is actually from the application and used to create

ActivityData classes and fill a vector with them. Here will be presented the methods

of the higher level that offers easy ways to handle the data.

private void CreatePackageActivities()
 {

……..

 xmlp = xmcon.getXMLTree("activities","null",0);
 int[] activities_id;

 int activities_count=0;

 while (x<xmlp.size())

 {

 xm = (XMLData) xmlp.elementAt(x);
 if(xm.getTag().compareTo("activity")==0)

 {

 activities_count++;
 }

 x++;

 }
………..

…….

 for(i=0;i<activities_count;i++)
 {

 xmlp =

xmcon.getXMLTree("activity",String.valueOf(activities_id[i]));
 ad = new ActivityData();

 x=0;

 while (x<xmlp.size())
 {

 xm = (XMLData) xmlp.elementAt(x);

 ad.setActivityId(activities_id[i]);
 if(xm.getTag().compareTo("description")==0)

 {

 ad.setActivityDescription(xm.getContent());
 }

 if(xm.getTag().compareTo("departure")==0)

 {
 k=0;

 if(xm.isNode())

 {
 xmlp2 = xmcon.getXMLTree(xm.getNodeId());

 while (k<xmlp2.size())

 {
 xm2 = (XMLData) xmlp2.elementAt(k);

ad.setActivityDeparture(Integer.parseInt(xm2.getContent()));
 k++;

 }

 }
 }

…………….

……………….
………………

 Activities.addElement(ad);

 }

 }

This method returns a vector from

the XML with the name

“Activities” as root.

The xm.getTAg() returns the tag

name.

The method xm.getContent()

returns the content of an attribute.

The method xm.isNode() checks if

the element is Node type.

Method similar with the first helps to return a

subtree from the total vector, but not with a

string argument but with id. The parser

during the parsing gives NodeIds to nodes

and RootIds to nodes and attributes. The

basic difference is that a node, will have a

nodeId and probably a RootId, an attribute

can have only RootId since the NodeId for

the attribute is always -1 That difference is

the basic logic for creating the tree structure

of the data in this application.

37

The obvious thing from the previous example is that in this level with the usage

of simple methods we can take the data needed.

Return type Method name usage
java.util.Vector getTree(int root) Returns a tree structure based on id

java.util.Vector getTree(java.lang.String tag_name

, java.lang.String id)
Returns a tree structure based on a string

value for the root and the id

java.util.Vector getTree(java.lang.String tag_name

, java.lang.String id, int level)
Returns a tree structure based on a string

value for the root ,the id and the desired

level.

java.util.Vector getTree(java.lang.String tag_name

, java.lang.String id,

java.lang.String where,

java.lang.String where_id)

Returns a tree structure based on a string

value for the root the id, the string of a

father that contains that tree and the id

java.lang.String getId() Returns the id

int getNodeId() Returns the node id

int getRootId() Returns the root id

java.lang.String getTag() Returns the tag title

java.lang.String getType() Returns type (node, attribute, root).

boolean isAttribute() Checks if this is attribute

boolean isContentNull() Checks if content is null

boolean isNode() Check if it’s a node

38

CHAPTER 5

Use Case Scenario for E-kones Experience

Here a use case scenario will be presented, starting of how the user can connect

to the e-kones service, select a package and retrieve a package in which the user is

registered to, as well the functionality that the application offers in order the user to

interact with the package.

Connecting to e-kones Service

During start up the user is prompted to give a

username and password (image 5.1). The application

checks if the user exists in the service (has registered at

least in one package) and sends to the application the

XML file with the packages that the user has registered

to as well and his personal information.

In case of a success login (if the user exists in e-

kones database) the main form appears (image 5.2). At

this point the application knows about who the user is,

therefore a welcome message appears on top of the

screen along with the current time. The noticable thing is

that there are only 3 options available (UserInfo,

Currency Calculator, Select Package) and the application

prompts the user to select a package.

Image 5.1 login form.

Image 5.2 Main form.

39

Package Selection

In order to select a package the user must click on

the package icon from the main menu.

The next interface (Package selection form)

demonstrates all the packages in which the user has

registered to (image 5.3). Information that appears for

each package are: the package icon, title, and date of

start and end. Each package has an istlMenuItem that

offers two options (Package Information and Select)

(image 5.4).

The Package Information option provides

information about the package, as shown on the right

sreen (Package Selection

Form)(image 5.5). The

provided information are

from top to bottom: package

title, description, duration in

days, and more specific start

and end date. Close button

terminates that form and

returns to the Package

Selection form (image 5.3).

The Select option from the

istlMenuItem selects the

package and terminates the package selection form.

At this point all the buttons in the main form are

enabled, and the application informs the user about the

active package (image 5.6). From all the buttons the only

one with “decoration” character is the Currency

Calculator which hasn’t been implemented. The other

will be explained starting from the simplest.

Image 5.3 Package

selection form.

Image 5.4 Package selection

form. stlMenuItem

selections

Image5.5 Package Information

form

Image 5.6 Main form

40

Personal User Information

If the user selects the User Info Icon the User

Information form appears (image 5.7). This form

provides personal user information like name, last name,

address, telephone etc. Close button terminates this form

and returns to the main selection form.

Other Users information that are registered to the same package

 The User Info icon initializes the users

information form with information about other users who

are registered to the same package (image 5.8). E-kones

service sends the users XML file immediately after the

user has selected a package, that’s why this option is

disabled until the user selects a package.

Image 5.7 User Information

Form

Image 5.8 Users

information form.

41

Calendar Use

Like previously described the Calendar component

offers “Time” representation of the package (image 5.9).

The Calendar form initiates by pressing on the Calendar

icon .

When the Calendar form stars by default shows the

current year /month. As analyzed before the Calendar

component consists of 3 sub-components.

Year sub-component

The year sub-

component presents the

current year and offers

two shift buttons. The left

/right arrow shifts by one year before/ after from the displayed year (image 5.10).

Month sub-component

The month sub-component displays the current

month along with two shift buttons. The left/right arrow

shifts by one month before/after from the displayed

month (image 5.11). In case that the month is December

or January the shift arrow becomes red and doesn’t not allows any further shift.

Days of Month sub-component

The central part of the Calendar component is the

Days sub-component, which is modified based on the

current month / year. (image 5.12).

On top the initials letters for each day appears

starting from Sunday and ending to Saturday. The days

are positioned inside the sub-component based on the

current days of the month / year. The background picture

represents the season, in total there are 4 season

backgrounds which are changed dynamically when the

season changes. Each day offers interaction with the user, for this use case scenario

the 22 of July will be selected.

Image 5.9 Calendar Image 5.10 Year sub-

component

Image 5.11 Month sub-

component

Image 5.12 Days of the month

sub-component

42

Day selection will initiate the Day Form, this form

provides information about a package day (if the user is

on one of the package days) or a user note (if the user has

made one). On the left image the Day form appears

empty since this day isn’t a package day neither the user

has added a personal note.

The Day form consists of the title on top, in this

case the generic title E-kones Experience and the current

date which is below the title. Left and right of the date

are date shift buttons (Haven’t implemented). Just below

the date there is the central container which is empty

offering only the Close and Add buttons (image 5.13).

When the user presses the add button, the New

Note Form initiates like shown in image 5.14. In this

form the user can add his personal note about this day.

The Personal Note Form offers title and Description

insertion as well the ability to assign this notation on the

map with a marker by using the button (Mark On Map).

After the user has added his personal note, he can

submit it to the system by clicking on the Apply button,

the Close Button terminates this form and returns to the

Day Form. In this example a

note is added like the one

appearing in the left screen

(image 5.15).

The user note is now

visible on the Day Panel

(image 5.16). Please note the

lack of edit, delete buttons

which is obvious, isn’t

implemented mainly due to

time limits.

The user can add an

other note by pressing the

Add button (there is no

limitation in the amount of

user notes) or to click the Close button and returns to the

Calendar. In this scenario another note addition isn’t required so the Close button is

clicked and return to Calendar.

Image 5.13 Day Form

Image 5.14 Personal Note

Form.

Image 5.15 Personal Note

Form with example data

Image 5.16 Updated Day

Panel with user Personal

Note

43

The obvious thing in the Calendar Component is

that the day with the user’s note has marked with a red

color (image 5.17). Generally in this application there are

two mainly colors, the red color is for user’s notes and the

blue for E-kones.

To proceed with this scenario a shift must be made

by two months until September where the package is

taking place (Note: shifting to the appropriate package

month may appear a bit strange. In fact it is not, given the

fact that the Calendar starts at the current month and that

the user will use the application at the time of the

package, the application will start from September.

Therefore a shift to the appropriate month will not

required. In image 5.18 the following things are

noticeable.

1. Package Days are marked with blue color (like

previously written).

2. The background image has changed providing an

image of the month’s season.

Clicking on the 1
st
 of

September the already

known Day Form appears.

The difference here is that

the Day Form now is not

empty. The title has changed

from the generic “E-kones

Experience” title to the

Package title. Another difference is in the main container

of the Day form which now has a description of the

package. The container now has an extra button named

“Activities”, clicking that

button will imitates the

Activities Form with

information about the Activities for that Day of Package.

Image 5.20 shows the Activities Form. On top is

the Package title, below the title is the Date along with

the number of day which this day is from the package. In

main container each activity is encapsulated inside its

own container. In this case which the activities are quite

few with a result not to fit on a single screen, a scroll bar

appears on the left of the screen providing the ability to

the user to scroll down to the screen (image 5.21). Each

Image 5.17 Updated

calendar with the note day

marked.

Image 5.19 Day Panel with

a Package Day

Εικόνα 5.20 Activities

Form.

Image 5.18 Package days

marked with blue color on

the calendar.

44

activity container includes the following information.

1. Activity Title.

2. Information about the Activity like price, arrival

location, time of arrival etc.

3. The very important istlRateItem that permits to the

user to evaluate the Business Partner who provides the

Activity.

4. Finally an istlMenuItem

that offers a variety of

options.

In this scenario the

last Business Partner will be

selected. By pressing the istlMenuItem named Options

the following options appearing: Business Partner

Information, Location Information, Note, Show On Map,

Submit (image 5.22).

The Business Partner

Information option initiates

the Information Form

(image 5.23). From this

form the user can see some information related to the

specific Business Partner that provides the Activity like

telephone number, location, email, address etc. Close

button terminates this form and returns to the Activity

Form. Location information

initiates the Information

form for the Location

(image 5.24), from where

the user can see information

about the location where the

Activity will take place.

Close button terminates this

form and returns to the

Activity Form.

The Note option opens

the Personal Note Form

(image 5.25), this specific

form is different from the one presented before. The

Mark On map button as well the title textfield aren’t

presented. Since it has no logical meaning for the user to

mark on map an already Business Partner’s position (it’s

already marked by the application) either to give title

Image 5.21 Activities

Form.

Image 5.22 IstlMenuItem

options for this Activity.

Image 5.23 Business

Partner Information Form.

Image 5.24 Location

Information Form.

Image 5.25 Personal Note

Form

45

since the note is referring to that Business Partner. For

the needs of this scenario the text “quality food will be

written” and which will hypothetically express the joy

from the user about the food that this Business Partner

provided (image 5.26). After by clicking the Apply

Button the application updates itself with the note, and

finally with the Close button the Note Form terminates

and returns to Activity Form.

After the user has put his personal note about this

business partner it is also possible to rate this Business

Partner. This possibility

offers the previously

explained istlRateItem. The

user can rate the Business

Partner by giving from 1 to 5

stars (image 5.27), in this

scenario the user gives a 5/5

stars rate. In order to update

the rate, from the

istlMenuItem the Submit

option mu be selected

(image 5.28).

The last very important

option is the Show On Map option, by selecting this the

user can see on map the position of the Bussiness Partner

on the map along with his note, rate and other options

which will be described later. By clicking on the Show

on Map selection the Map component appears (image

5.29). On the map this

specific Business Partner is

marked with a highlight

marker . The user can

click on it and see his rate

along with his note (image

5.30). From the istlMenu

named Options the Close

option closes the istlMap

component and returns to the

Activity Form. The user selects from the istlMenu the

Close option.

Image 5.27 A 5/5 stars rate

for this Business Partner.

Image 5.28 Submit rate

Image 5.30 Clicking on the

highlight marker provides

the user previously input.

Image 5.26 Note form with

scenario data.

Image 5.29 istlMap with

highlighted Business

Partner Marker.

46

The last step before the end of the calendar use

case scenario is to add another note in to the Day Form.

From the Activities Form at the bottom the Close button

terminates the Activity form, and the Day Form appears.

There with the way described before by clicking on the

add button a new note can be added. In this example the

user wrote the note with title “holidays” and the

description “so far so good”. The obvious in the Days

Form is that the user note is put under the Package

Description for this day (image 5.31), as previously

described the user can add as many notes as he wants but

if a day is a package day

then every note goes under

the package day (as in this

example). Close button terminates the Day Form and

returns to the Calendar, from there by clicking on the

istlMenuItem the user selects the Exit option which is the

only available, and returns to the main selection form

(image 5.32).

Image 5.31 Day Form with

Package Description and

User Note

Image 5.32 Calendar, the

Exit option terminates the

Calendar.

47

Map Use

From the Main Form the GPS icon activates

the map (image 5.32). In istlMap component is noticeable

that instead of watching a map with center the user’s

position, a map with a center an imagine square made by

the four most far positions of the Bussiness Partners is

displayed, while user’s position appears on the top left

corner.

The following are noticable (image 5.33).

1. An istlMenuItem with the name Options which

offers extra options to the user.

2. The main container

with the map image along with the map shift

buttons (arrows on the map sides).

3. Different types of markers, during the start the

only visible markers are e-kones markers (blue

color) and users positions markers (green figures).

As mentioned before e-kones experience offers 2

color schemes, red is for user interaction results, and

blue for e-kones characteristics.

E-kones marker (business partner) this

marker is placed by the application and denotes

business partner. The position on the map derives from

the XML that the service has sent to the application on which the business partner has

before gives his geographical position to the service.

User Marker is placed by the user anywhere in the map, and denotes a

custom user marker. User markers can be placed by the user either through

calendar (as examined before) either through the istlMap in order to mark a specific

spot on the map and add a custom note.

Ekones Users Markers are markers put by the application and denote the

position of other users that are registered in the same package. Every 10000

milliseconds the application retrieves the new users locations and rearrange their

positions on the map.

As previously described in order this feature to work correctly a service must be

created. In this project since no service for that has implemented user positions are

retrieved from a url on a server, and their locations are predefined and not produced

real time.

Image 5.32 Main Form

Image 5.33 Map component

48

Every press action on a free area on the map

triggers an istlPopUp, providing the Add option (image

5.34). Selecting the add option it will create a new user

marker (red color) at the pressed spot.

If the user presses on a

user marker a new istlpopUp

with different options this

time will appear. The new

options are (move, remove

and Note) (image 5.35).

Move option moves the

marker in a new location on

the map with a simple drag

and drop. Remove option,

removes the selected user

marker from the map. Note

option allows the user to add

his custom note on this marker by initiating the Note

Form (similar to the one described before).

Image 5.36 shows the

istlPopUp for an e-kones

user marker (Business

Partner). The options offered

by the istlPopUp are

Business Partner Name and

Distances. First option when

pressed provides information

for the selected business

Partner by initializing the

Business Partner Information

Form (image 5.37).

Distances options initiates

the Distances the

Information Form providing information about the

distances between this Business Partner and the rest on

the map (image 5.38)

Image5.34 istlPopUp

triggered by pressing on an

empty map space.

Image 5.35 user marker

istlPopUp

Image 5.36 Business

Partner istlPopUp options

Image 5.37 Business

Partner information Form.

Image 5.38 Distances

Information Form.

49

Pressing on a e-kones user marker the user name

appears on the istlPopUp (image 5.39).

The last element of the

istlMap component is a two

level istlMenuItem named

Options, which offers a

variety of selections to the

user (image 5.40).

First level selections

are Gps Config, Notations,

Users, Zoom, Ekones, Con,

Exit. Each one will be

examined separately.

Con Option provides a way to force the map

loading in cases where for some reason the map doesn’t

show. Exit option causes the end of istlMap component

and returns to the main selection form. Gps Config option

initiates the map configuration form (image 5.41).

Here the reader must note that options in this form

haven’t application impact since they removed cause of

compatibility issues, instead

they stay just to present the

istlcombobox.

The first combobox

offers the ability for the

user to change the

requested map type. Options

in this combobox are all the

possible maptypes that the

Static Google Maps Service

offers. (Image 5.42).

Second combobox offers

the ability for the user to change the resolution for the

requested map. Options in this combobx start from

64X64 and ends to 240X240 resolution (image 5.43). The

last combobox offers to the user the ability to change the

desired zoom level from 0 (no zoom) to 17 max zoom

(image 5.44). Apply button submits the changes to the

application while the Close button ends the Map

Configuration Form.

Image 5.39 e-kones users

istlPopUp.

Image 5.40 istlMap

component’s istlMenuItem.

Image 5.41 Map

Configuration Form.

Image 5.42 Map type

combobox.

Image 5.43 Map Resolution

cobobox.

50

Notation Option has a

second level which offers the

same options as the user

marker istlPopUp (image

5.45). The only new option

is the Hide option which can

hide / unhide all the user

markers from the map.

Users option has a

second level which offers the Show All and Show

Friends options (image

5.46).

Zoom option has a

second level which offers

the Zoom In and Zoom out

options (image 5.47)

Ekones Option has a

second level which offers

the Hide markers option and can hide / unhide ekones

markers from the map (image 5.48)

Image 5.44 map zoom level

combobox

Image 5.46 istlMenuItem

Users option.

Image 5.45 istlMenuItem

Notations options.

Εικόνα 5.46 istlMenuItem

επιλογή Zoom.

Image 5.47 istlMenuItem

Zoom option

Image 5.48 istlMenuItem

Ekones option.

51

CHAPTER 6

 Development Cycles and Problems.
The development of e-kones experience application last for four months, the

application passed through various development cycles before the final prototype

version. For start each component developed as standalone prototype, after each

standalone component bound together to a single application and the main menu was

build while necessary fixes were made when needed. At the same time the appropriate

data classes build in order for the components to work together. After the bound was

complete the XML parser along with the appropriate data classes developed in order

to access the XML data from the server. At the end the interface components

developed.

Along with the development miscellaneous tools developed in order to test each

component (XML Parser tool, Google Maps Connection Tool, GPS tool).

During the

development a

number of

problems arise

mainly due to

incompatibilty

between J9 and

LWUIT, some

overcomed some

other not and

still presented in

the final

prototype

version. Most of

them analyzed in

previouys pages here a sum up will be made.

1. Device denial to load google maps of a specific type, resolution and

zoom level.

2. Small algorithm problems related to the convertion of degrees to screen

pixels.

3. General performance problem due to the large data traffic between

forms.

4. Lack of JSR-75 support from the J9, with a result not to create temp files

and the performance issue to arise as metioned in previous line.

Application visioning with a

prototype sketch.

52

Initiate of the first development cycle: Application visioning, attempts

to build the first base components.

Development of the first

critical components istlMap

and Calendar

Implementation of the two critical

components into the application and XML

parser build.

Development of the Main Form and the

auxiliary forms, tests and fixes when needed.

Development of the first independent

components

Development of interface components (istlpoup,

istlMenuItem etc)

Final prototype version

53

Appendix

Test tool for XML Parser

During the development of the XML parsing algorithm a test tool was created

for debugging and check the parsing data purposes. The process by this tool is to

retrieve a XML and put the data in order to check if the parsing algorithm was correct,

after each data class was built and checked if that results were correct. Finally the

XML parser along with data classes implemented to the application. Here the XML

parsing tool will be explained

Connecting button to

the internet where the

XML file is.

Next / previous line (element)

inside the Vector that holds

the XML parsed data.

Total number of lines

read and stored into the

Vector.

Current line

XML line information.

 Line TAG

 Type (Root, Node,

attribute)

 Content (if attribute)

 Id.

 Node id

 Root id.

Way for querring the

XML (1 of 4). When the

connect button is pressed

this istlcombobx is

created with content only

the XML nodes. Then

with Get button a

specific node tree can be

retrieved.

The node with node id 1

selected the total number

of lines has changed to

the number of children

for this node which is 5.

54

GPS Tool

The GPS tool works as stand alone and displays the geographical position of the

user together with some other information. The tool uses a buffer of 512 bytes to read

from the com4 port, after checks if a line starting with the $GPGGA and ending with

<CR><LF> is presented. If yes then cuts that line (, separated) into appropriate parts

which are put in a data class that will hold the GPS data.

ΝΜΕΑ message key

If data is valid

Time

Latitude

Longitude

A full unprocessed

message as is on the

port.

