

The complete guide from the simple to

more advanced most commonly used

features of the ArmA II 2D map editor

2D Editor
Must-Know User's Manual

Murdock 121

NOTE: THIS GUIDE IS BASED ONLY ON SINGLEPLAYER MISSION

EDITING AND SCRIPTING. KNOWN AI AND SIMILAR BUGS

ENCOUNTERED WITH DEDICATED SERVERS ARE NOTED HERE,

HOWEVER NO GUIDELINES ON CREATING A MISSION FOR ONLINE

GAMEPLAY, OR ADAPTING ONE ARE FOUND IN THIS MANUAL

P a g e | 1

Contents:

Basic use of the Editor

1. The interface Page 2

2. Adding and editing units Page 3

3. Adding and editing waypoints Page 4

4. Adding and editing triggers Page 7

5. Adding and editing groups Page 9

6. Synchronizing Page 11

Intermediate use of the Editor

1. Modules Page 12

2. The init field and coding Page 13

3. Air vehicles control Page 14

4. Unit gear control Page 17

5. Boarding vehicles Page 18

6. Mission editing modes Page 19

7. Camera scripting Page 20

Advanced use of the editor

1. Practical use of triggers and syncing Page 23

2. Inserting custom background music Page 24

3. Calling in predefined CAS Page 25

4. Calling in Artillery strikes/CAS on marked targets Page 28

5. Advanced use of modules Page 29

6. HALO jumps Page 30

7. AttachTo and SetPos commands Page 31

8. Briefings Page 34

Scripting, scripts and codes

1. Useful and used codes Page 39

 Page 42

Documentation

1. External links Page 43

2. Credits, thanks and terms of use Page 44

3. Please read this appeal Page 45

NOTE: SCREENSHOTS DISPLAYED IN THIS MANUAL WERE TAKEN FROM A MODDED VERSION OF ARMA II: COMBINED

OPERATIONS, AND MAY OR MAY NOT RESEMBLE YOUR VERY OWN COPY OF THE ACTUAL GAME, IN CASE YOU ONLY HAVE

ARMA II OR DO NOT HAVE SOME OF THE MODS. HOWEVER, THE METHODS FOR EDITING STAY THE SAME FOR ANY GAME

P a g e | 2

Basic use of the Editor

The interface
To enter the Editor, run ArmA II and select Singleplayer > Editor
From there you have the following options:

Image 1.0 – Editor view with Units (F1) selected

Mission field Here you select the mission editing modes – Mission, Intro, Outro – Win and Outro – Lose
Intel field Here you select the mission name, description, time of day, date, weather conditions etc.
Units (F1) Using the Units option you can place, move and edit units
Groups (F2) Using the Groups option you can place, move and edit groups and chains of command
Triggers (F3) With the Triggers option activated you place, move and edit triggers
Waypoints (F4) When selected, this option allows you to place, move and edit waypoints for units and groups already placed
Synchronize (F5) While the Synchronize option is activated, you can drag-and-drop to force simultaneous execution of orders
Markers (F6) Use this to place Markers on the map and enable yourself to create tasks and objectives (see Advanced: Briefing)
Modules (F7) Placing and editing Modules is achieved using the Modules option
Load, Merge, Save and Clear Using these buttons you can Load a previously saved map, Merge this mission with another one,
Save it for later use or editing and Clear the entire map for a fresh start
NOTE: BY USING THE CLEAR OPTION THE EDITOR BEHAVES LIKE YOU BEGAN CREATING A COMPLETELY NEW MISSION
IDs and Textures These options enable you to show the IDs (numbers) and Textures of the ground.
Exit With the Exit option you exit the Editor (hopefully, we won’t be needing it)
Map The Map view is what you’ll use to edit the mission. There are four red lines indicating the current cursor position, wide
roads are marked by yellowish-orange lines, and side roads are marked by bright yellow lines. Gray areas are houses, fences
and other objects.
Controlling the Map view
 Zooming Use the mousewheel to Zoom in and out while in the Map view
 Moving To move around the map, press-and-hold the right mouse button while moving your mouse

P a g e | 3

Adding and editing units

Add units by selecting the Units (F1) option from the side menu (see image 1.0) and double-clicking on the map at the desired
unit position. Edit them by double-clicking an already placed unit.

Image 1.1 – Placing a unit

In this example, we are placing a BLUFOR United States Armored M1A2 Tusk with the Player as commander, rank of Captain
and In Formation. Explanation follows:
Side field Here you select a side for your unit – BLUFOR: The western forces – ‘good guys’ OPFOR: The eastern forces – ‘bad
guys’ INDEPENDENT: Independent forces, can be neutral and can be allies to one side EMPTY: Empty vehicles and other useful
objects
Faction field This is what you’ll use to determine the army the unit belongs to
 BLUFOR ARMIES USMC, CDF, US NOTE: DLC FACTIONS ARE NOT INCLUDED IN THE MANUAL
 OPFOR ARMIES Russia, Insurgents, Takistani Army and Militia
 INDEPENTED FORCES Takistani locals, Guerillas, etc.
Class field Here you will select the class the unit belongs to – Men, Air, Armored, Cars, Support, Static, etc.
Control field Use this to determine whether the unit is controlled by the player or is playable at all
Rank field In order to establish a hierarchy in the team/squad, use the rank field

Example If a Captain dies, a Lieutenant will take his place and be acting commander
Unit field This is where you select the exact type of the unit. Here it is a M1A2 Tusk heavy armored vehicle (tank)
Special field Here you determine if the unit is In Formation (this automatically places it on the groud), Flying (air only) or
None (no special functions available, the unit is placed exactly like you placed it)
Initialization field This field is used to enter custom parameters that are activated as soon as the unit is spawned
NOTE: THE INITIALIZATION FIELD WILL BE REFFERED TO AS ‘INIT FIELD’ IN THE MANUAL
Name field Very important field if the unit will be used in scripts or codes, it sets the name of the unit
Skill field Sets the skill of the unit. Values from 0.2 (stupid, blind and retarded) to 1.0 (war veterans)
Health/Armor, Fuel and Ammunition sliders These are used to determine the damage to the unit, amount of fuel and
ammunition it has at the start of the mission
Azimut This is used to determine the facing direction of your unit. It is expressed in degrees (0° = North)
Units can also be rotated by left clicking on them, and holding shift while dragging with the left mouse button
Condition of presence Here you’ll type in the code to determine the conditions at which the unit spawns
Placement radius This is the radius of the circle within the unit can spawn, and is randomly spawned inside it

P a g e | 4

Adding and editing waypoints

Add waypoints by selecting the Waypoints (F4) option from the side menu, clicking on an already palced unit and double-
clicking on the map at the desired waypoint position. Edit them by double-clicking an already placed waypoint.

Image 1.2 – Placing a Move waypoint. Note that in the background you can see I have selected the tank from the last picture

Select type field This is where you select the type of the waypoint. A list of waypoint types and functions is on the next page,
and also in your game manual
Waypoint order Select the order in which the waypoint is executed.

Example A waypoint with a 0 order will be executed first, waypoint 1 will be executed second, waypoint 2 third, etc.
Description A description of the waypoint. It will be shown under the waypoint marker in-game (if the difficulty allows so)
Combat mode The ROE (rules of engagement) for the unit/s.

Example: Never fire will force the units not to open at all. Hold fire will force them to sustain from firing unless fired
upon. Open fire will allow them to shoot. Engage at will allows units to chase their targets, without compromising
their final objective.

Formation Determines the formation in which the group travels. A list of formation types is on the sixth page
Speed Selection of the speed the units will travel at.

Example: Limited speed units will move slowly (infantry will walk) to their objectives. Normal speed units will go
normally (infantry will run). Full speed units will race to their objectives.
Behavior Choose the amount of awareness for your units. A list of behaviors is on the sixth page.
Placement radius field The waypoint is placed somewhere within the PLC radius field, randomly.
Completion radius field The radius of the waypoint’s effect and completion.

Example For a Move type waypoint, as soon as the unit enters the desired radius, it is considered completed, although
the center has not been reached.
Position in house Lets you pick the position the units (only infantry!) will take inside a house, if the waypoint is placed inside
one. NOTE: THE FEATURE IS MOSTLY BUGGY, AND IT TAKES SCRIPTING AND CODING TO AVOID NO-CLIP EFFECTS ON
MULTIPLE UNITS WHEN USING THE POSITION IN HOUSE COMMAND
Timeout The amount of time that has to pass after completion to send the units to their next waypoint.
On Act.(ivation) A piece of code that decides what happens on completion of the waypoint objective.
Script Only available for Scripted-type waypoints. Allows you to select a script to execute. More information on the BIS wiki.
Effects Allows you to select an effect that occurs upon completion. You can select a Track to play, Voice (for use with the Talk-
type waypoints) and Anonymus sounds, etc.

P a g e | 5

LIST OF WAYPOINT TYPES

Move The group will move to this point or object
Destroy This waypoint type works best when it is attached to a object. The group will attempt to destroy whatever object the
waypoint is placed upon, irrespective of the target object's side
Get In The exact effect this waypoint type has depends on whether it is placed in empty space, attached to a vehicle or a non-
vehicle object. There are many possible combinations of circumstances, each with slightly different effects.
Seek & Destroy It does not matter if this waypoint type is placed spatially or on an object. If attached to an object, the
waypoint will remain fixed at the objects initial position as displayed in the mission editor.
Join When this waypoint type is attached to a unit, the group will move to the position of that unit, then join and follow that
unit's group, irrespective of side or ranks.
Join & Lead This type is exactly the same as the Join waypoint type, except the group that leads the merged group will be
opposite in each situation
Get Out The group will move to the waypoint, then disembark from any vehicles it's members are in. Helicopters will land on
the closest "H pad" object within 500m of the waypoint.
Cycle This waypoint type will change the group's active waypoint to the nearest waypoint other than the group's previous
waypoint.
Load The group will move to the waypoint (spatial or object), then any soldiers on foot will board any vehicles the group
possesses. They will get into the vehicles as cargo where possible, then as the crew of the vehicle
Unload The group will move to the waypoint (spatial or object), then any of it's units that are in cargo space of any vehicle will
disembark. Units in crew positions will not disembark. NOTE: ON A DEDICATED SERVER WITH AI PLAYERS, THE HELICOPTER
WILL HOVER TOO HIGH TO SAFELY DISEMBARK.
Transport Unload The group will move to the waypoint (spatial or object), where any units from other groups who are in cargo
spaces of the original group's vehicles will disembark. NOTE: ON A DEDICATED SERVER THE WAYPOINT WILL ONLY WORK
WITH AN AI PLAYER. ALSO, IF THE AI LEADER IS NOT IN THE HELICOPTER, BUT ONLY HUMAN PLAYERS, THE SAME ISSUE AS
WITH UNLOAD WILL OCCUR.
Hold This waypoint type will cause the group will move to and stay at this position indefinitely. Only a Switch type trigger or
script command will move the group from the waypoint
Sentry The group will move to the waypoint and hold position until the group knows enough about an enemy unit to identify
which side that belongs to, and that they are capable of attacking
Guard This waypoint works in conjunction with the 'Guarded by' trigger type, and it is covered on the BIS wiki.
Talk Is used in combination with the Effects button at the bottom of the Waypoints Dialogue. The group's leader will speak the
given Voice phrase, complete with lip movements.
Scripted This waypoint type will execute the script file that is in the “Script” box on the bottom of the waypoints screen.
Support A group with a current waypoint of this type will move to the waypoint's position, then wait until it can provide
support for another group that requests relevant support using "Call Support" command menu. NOTE: ONLY GROUPS WITH
MEDIC, REFUEL, AND SIMILAR ASSETS CAN DO SUPPORT ACTIONS
Get In Nearest The group will only move to the waypoint if there are any empty vehicles, or vehicles on the group's side with
empty seat spaces, that are within about 50m of the waypoint's location. NOTE: ON A DEDICATED SERVER, AI UNITS WILL
ONLY ENTER EMPTY VEHICLES
Dismissed This waypoint type can be used to simulate casual off-duty behaviour. The group will move to the waypoint, then
be dismissed. A dismissed waypoint is completed if the group comes into contact with any enemy units.

P a g e | 6

LIST OF FORMATION TYPES

No Change The group will continue under with it's current formation.
Column The group will line up in a single file behind unit 1, five meters apart.
Staggered Column The group will form into two columns separated by a width of five meters. The right column is staggered
five meters behind the left, unit 1 leads the left column.
Wedge The group will form into a wedge shape, with unit 1 at the forward point. Each following unit will stay five meters
behind and five meters further left or right from the man in front. All even units will be on the right side of the formation
leader, all odd units on the left.
Echelon L(eft) The group will form into a line behind and to the left of unit 1. Each unit is five meters behind and further left
than the previous unit.
Echelon R(ight) Same as Echelon L(eft), except the formation will be to the right.
Vee Similar to Wedge, but inversed. Each unit stands five meters in front of and further to the left or right of the nearest man.
Line The group will form a line perpendicular to the facing of unit 1. Each man stands five meters apart.
Delta This formation will form into three columns behind the formation leader. The outside columns are each 2.5 meters
behind the middle column and 2.5 meters to either side.
Column (compact) This formation is the same as Column, except only 2.5 meters between each unit.

LIST OF BEHAVIOR TYPES

No Change The group will continue to behave in it's current state.
Careless Careless behaviour will cause the group move and behave in a very non-combat manner. The group will form into a
Compact Column like formation, where each unit will directly follow the man in front rather than moving in a formation.
Soldiers will carry their weapons in safe position (rifles across body, pistols holstered) and walk slowly. Infantry will not fire on
enemy targets (unless they have wounded legs), but vehicles will still fire on enemies. Groups in careless mode do not switch
to a more alert mode if enemies are encountered. All unit types show preference moving along roads whenever possible.
Safe Similar to Careless, except the group will change behaviour to Aware upon detecting an enemy unit.
Aware This is the default behaviour mode. The group will move at moderate speed, with soldiers generally standing upright
and making some occasional efforts to use cover when available. Most unit types still prefer to travel along roads and vehicles
will travel in convoy irrespective of their current formation type. Tracked vehicles will not use headlights, and will drive across
any surface with no preference given to staying on roads. Air units will not use lights. When enemies are known to be in the
area, troops will disembark from any of their group's wheeled transport vehicles (trucks, cars), and the group will move while
carrying out special maneuvers, making stronger use of available cover.
Combat This behaviour mode will result in a much higher combat performance than Aware. Infantry groups will always move
using bounding maneuvers, and will normally keep crouched or prone unless moving. They will make some use of available
cover, choosing to spend some time crawling when in cover. They seem to occasionally send out one unit ahead of the group
as a scout. No vehicles will use headlights at night. If enemy units are known to be in the area, infantry groups will move is a
more cautious manner.
Stealth Stealth mode will cause a group to behave in a very cautious manner. Infantry groups will move via cover whenever
possible, spending much of their time crawling. When they need to cross open ground, they appear to occasionally choose to
send scouts running ahead to reach the cover ahead as quickly as possible. A stealthy infantry formation can tend to end up
quite fractured. Wheeled vehicles will still follow roads if available, but no longer convoy. If enemy units are known to be in
the area, infantry groups will move more closely together and spend even more time prone.

P a g e | 7

Adding and editing triggers

To add a trigger select the Triggers (F3) option and then double-click the desired position for your trigger on the map view.

Image 1.3 – Adding a trigger. Note the map is now quite zoomed if compared with the first interface image

Axis a and Axis b fields Settings for the width and length of the trigger. If you want a circle, make them equal and select Ellipse
Angle The angle of the trigger. Works similar as Azimut in unit selection.
Ellipse/Rectangle and Once/Repeatedly Select the shape of the trigger, and how many times can it be triggered
Activation This is the condition for the activation. A list of activation types is on the next page
Present/Not present The absolute setting for the condition.

Present = Is and
Not present = Is Not
Example: A trigger with the condition Activation BLUFOR and condition Present will go off as soon as BLUFOR forces
enter it’s area of effect

Detected by BLUFOR/OPFOR/Independent/Civilian The relative setting for the condition.
Example: A trigger with the condition Activation BLUFOR and condition Detected by OPFOR will go off when OPFOR
forces think (or spot) BLUFOR entered it’s area of effect

Countdown/Timeout Select the trigger’s type of activation.
Countdown Once the trigger's conditions are met the trigger will wait the specified amount of time before activating.
Timeout The trigger's conditions must be met for the duration of the specified amount of time before the trigger
activates

Type Select the type of the trigger here. A list of all types is on the following page
Name and Text fields The Name field is used in the same way as with units. The Text field is where you type the text displayed
 Example: In case of a Radio Alpha trigger called CAS, when in Map view in-game, you’ll see a radio that says “CAS”
Condition field You can also set the condition for the trigger using codes, which you will type in here
On Act.(ivation) Same as with Waypoints (see Waypoints (F4) on page 4)
On Dea.(ctivation) Same as On Act., but only when the trigger is Deactivated
Effects Same as with Waypoints (see Waypoints (F4) on page 4)

P a g e | 8

LIST OF ACTIVATION TYPES

None - The trigger can still be activated when the Condition string returns true, but in this case this will always return false.
<side> - Which of the sides will activate the trigger when any unit of that side satisfies the currently chosen one of the six
conditions below.
Radio <letter> - The trigger will be activated by a radio command available to all players leader of a group or possess a radio.
Activation of radio triggers can be limited to specific players using the setRadioMsg command. NOTE: RADIO TRIGGERS TO
NOT MAKE USE OF ANY OF THE SIX CONDITIONS, AND THEY DO NOT WAIT FOR THE TWO COUNTERS
Seized by <side> - Will activate when the seizing size is deemed to be in control of the area. This trigger type works with the
Timeout Counter values - a low level of dominance will activate the trigger after a period of time close to the max timeout, and
visa versa. Depending on unit types, the seizing side can be completely outnumbered (4:1) and still satisfy the minimum
required level of presence for the Maximum timeout counter. This trigger type can also be used with the any Detected By
<side> option, meaning only units known to the Detected By side will be considered by the seized by calculation. This can
easily create some interesting area domination effects. For example, a Seized by BLUFOR trigger using the Detected By BLUFOR
option will activate when BLUFOR think they have seized the area, while the same trigger using Detected by OPFOR option will
activate when OPFOR think BLUFOR have seized the area. The Not Present option inverts the triggers normal behaviour (ie,
Not Seized by <side>).
Vehicle - This option is only available if the trigger is linked to an unit, vehicle or object. Only that entity can activate the
trigger when it satisfies whichever of the six condition is used
Whole Group - This option is only available if the trigger is linked to a unit. The trigger will activate when the linked unit's
entire group satisfy whichever of the six conditions is being used
Group Leader - This option is only available if the trigger is linked to a unit. The trigger will activate when the linked unit's
group leader satisfies whichever of the six conditions below is being used
Any Group Member - Again, this option only available if the trigger is linked to a unit. The trigger will activate when any single
unit in the unit's group satisfies whichever of the six conditions is being used

LIST OF TRIGGER TYPES

None - The trigger will have no other effects other than those listed in the On Activation block. This is the default.
Guarded by (side) - The trigger's centre point will define a point to be guarded. If the trigger is group linked to an object, it will
be moved to that object's initial position during mission initialization. Guarded triggers do not activate, they only define guard
points. Groups who are in Guard waypoint induced guard mode will move to the first placed (highest priority) available
unguarded guard point. If an enemy unit is detected by any unit on the guarding group's side anywhere on the map, the group
that is guarding the lowest priority guard point will leave their guard point to attack. Note they react over any distance, even if
they are not capable of damaging the detected object. Also the normal Detected by rules do not apply - an unarmed man can
detect a tank for the purposes of guarding. See the Guard waypoint type for more details.
Switch - A switch trigger is very useful for "breaking" a group out of a Cycle waypoint loop, or moving the group away from a
Hold or Guard waypoint. When the trigger is synchronized with a waypoint, activating the trigger will instantly change the
group's current waypoint to the first waypoint after the synchronized one. Note the synchronized waypoint's On Activation
block is not executed.
End <#> - Will cause the mission to end once the conditions are met. There are 6 different winning endings, each with a
different possible debriefing text. Different endings to a mission can also lead the player down a different "branch" of a
campaign.
Lose - Activating a trigger of this type will end the mission in failure. Note this is not the same as the death of the player. If the
mission is part of a campaign, the campaign can continue along the defined losing mission branch.

P a g e | 9

Adding and editing groups

Add groups by selecting the Groups (F2) option from the side menu and double-clicking on the desired group position.
This tool can also be used to set a hierarchy irrespective of ranks using press-and-hold the left mouse button
 Setting hierarchies using the Groups (F2) tool: Follower  Follows  Leader
NOTE: IN CASE OF SETTING HIERARCHIES, WHEN YOU CHANGE THE UNIT’S LEADER, IT LOSES IT PREVIOUS WAYPOINTS

Image 1.4 – Placing a group. I have not erased either my tank, waypoint or trigger in order to show how their symbols look like

Side field Same as with placing Units (see Units, page 3)
Faction field Same as with placing Units (see Units, page 3)
Type Select the type of your group
 Infantry Men
 Motorized Infantry Men and two cars
 Mechanized Infantry Men and an APC
 Armored Tanks
 Air Helicopters, UAVs or aircraft
Name Defines the specific group and units to be placed in it
Azimut Same as with placing Units (see Units, page 3)

P a g e | 10

 Selecting the M1A2 Tusk Tank that will follow the Leader

 Dragging the marker to the Leader

 Dropping the marker at the Leader’s position
Image 1.41 – Setting a hierarchy using the Groups tool. Note in the last slide there is a blue line attached to the tank and group
Note also that in the first and second slides, the tank has a black line to the right, marking it’s current waypoint

P a g e | 11

Synchronizing

Synchronize waypoints with other waypoints and triggers with other triggers by selecting the Synchronize (F5) option from the
side menu, selecting the waypoint/trigger to synchronize and drag-and-dropping from it onto the desired waypoint/trigger to
be synchronized

 Selecting the trigger to sync

 Dragging the marker to the waypoint

 The completed synchronization
Image 1.5 – Synchronizing a trigger with a waypoint. Note in the last slide there is a blue line connecting the trigger and
waypoint to mark the synchronization

P a g e | 12

Intermediate use of the Editor

Modules
To add modules, select the Modules (F7) and double-click on the map to place the module

Image 2.0 – Placing an Ambient Civilians Module

Unit Use this to select the type of the module. A list of modules is on the next page
Name field Here type in the name to be used in codes and scripts
Init This is where you’ll insert codes to be executed on the mission beginning
Description A description for the module
Condition of presence Same as with placing Units (see Units, page 3)

Image 2.01 – A placed Ambient Civilians Module
NOTE: SOME MODULES HAVE TO BE SYNCHRONIZED (F5) IN ORDER TO WORK PROPERLY

P a g e | 13

The init field and coding / Air vehicles control – height

The Initialization field and coding is probably something you’ll be using a lot with creating missions. You will find it useful at all
times, and there probably won’t be a mission in which you won’t use it. Here’s an image to get you started:

Image 2.2 – Placing an AH-64D Apache helicopter with the setting to fly at a height of 40 meters

An explanation of this situation follows

This helicopter has a Flying Special setting. That means it will fly on spawn
In it’s initialization field is a piece of code:

this flyInHeight value where this marks the object the command applies to, flyInHeight is the command, and value is
the integer value (number) for the height

That means that the this variable marks theobject executing the command – the unit is applying the command to itself
The game provides assistance by showing this above your code:

helicopter flyInHeight height and lets you know that the object the code applies to is a helicopter, and the value next
to the command flyInHeight is supposed to be the height value which determines how high the chopper flies

Almost all editor objects have an init field, and keep an eye out for it, because it may be quite useful.

P a g e | 14

Air vehicles control - landing

Let’s control some helicopters… let’s say, for example, you need a helicopter to land somewhere. How on earth do you make
him do that? It’s quite simple actually, here are the steps to do it. NOTE: SET THE HELI’S FLYINHEIGHT TO 85, RECOMMENDED

Image 2.31 – First, name your helicopter unit “helicopter”, so you can command it from the waypoint’s On Act. code box

Image 2.32 – Then, create a helipad – Empty > Object > H (Invisible) – you will use it to make your heli land where you want to

P a g e | 15

Image 2.33 – A complete helicopter/helipad setup

Image 2.34 – Creating a Move waypoint with the On Act. paramaters to make it land

So what the hell have I just done?
 helicopter land “land”, or in the Editor’s language: helicopter land landing mode

The helicopter variable is our chopper’s name, land issues a landing command, and “land” is a landing mode where
the helicopter touches down and turns off it’s engines. There are also “get in” and ”get out” landing modes, which
allow him to remain with the rotors turning for quick take-off if in need

P a g e | 16

Air vehicles control – sum up and results
There, we’ve set up our settings as follows:
AH-64D:
 Name: helicopter
 Init: this flyInHeight 40 NOTE: FOR TROOP LANDINGS, USE 85, HERE I USED 40 BECAUSE IT’S AN ATTACK HELI
 Special: Flying
Waypoint 0:
 Type: Move
 On Act.: helicopter land “land”
And here are screenshots of the results

Image 2.4 – The helicopter is (1) in the air (2) performing landing maneuvers (3) on the ground with it’s engines off

P a g e | 17

Unit gear control

Ever been frustrated by the fact you can’t customize the gear for a unit in a mission? Well, here’s how:

Image 2.5 – Placing a Rifleman armed only with his M9 Silenced sidearm and only one magazine

An explanation of these factors is like this:
 removeAllWeapons this; this addWeapon “M9SD”; this addMagazine “15Rnd_9x19_M9SD”
 or in the Editor’s help boxes: removeAllWeapons unit; unit addWeapon weapon; unit addMagazine magazine
The removeAllWeapons command is used to strip the unit of all it’s weapons to make room for your custom loadout
The addWeapon command adds another weapon to the current gear, and is followed by the weapon’s classname in quotes
The addMagazine command works in a similar way as the previous one, but it gives ammo to the unit
NOTE: EVEN IF THE UNIT’S WEAPON DOES NOT USE MAGAZINES (A ROCKET LAUNCHER, E.G.), THE COMMAND IS THE SAME

Image 2.51 – Here you see the results of the M9SD + 1 Magazine command. Look in the top-right corner to check the amount of
ammunition for the current weapon. Only 1 15-round magazine! There are 11 rounds in currently because I fired some :P

P a g e | 18

Boarding vehicles

Boarding vehicles is not tough in-game, but when you want to place units inside some vehicle’s cargo space it might get a bit
nasty… and brutal. So, in order to explain how it works, we could use an image first

Image 2.6 – Placing a Rifleman unit inside a HMMMV Terminal car

Give your desired vehicle a name. In this example I used the name humvee, then insert this command into your unit’s Init
field: this moveInCargo vehicle. You can also use the moveInGunner and moveInDriver codes

P a g e | 19

Mission editing modes

To select a mission editing mode, click on the Mission field in the side menu and select the desired mode from Mission, Intro,
and Outro win/lose modes

Image 2.7 – Selecting the Intro editing mode. If you noticed you don’t have this map in your game, don’t worry – it’s an addon
map called MBG_Vietnam

A LIST OF EDITING MODES

Mission In this editing mode, you edit your Mission, during which the player character is human controlled
Intro In this editing mode, you edit your Intro, during which the player character is CPU controlled and mostly is a cutscene
Outro Outros are the same thing as the Intro, but are played after the mission ends and have two types
 Outro – win This Outro type is the type played after you’ve won the mission (completed enough tasks)
 Outro – lose This Outro type is the type played after you’ve lost the mission (did not accomplish enough objectives)

In order to create cutscenes for Intro and Outro modes, you must use scripts and other external text files that will be covered
in the next section

P a g e | 20

Camera scripting

In the Intro and Outro modes you will want to create cutscenes to familiarize players with your mission’s story, or just for
showing off, but in any case you will need some extra text files and a bit of scripting.

1. In your mission’s Intro or Outro mode, create a unit NOTE: YOU WILL NEED A PLAYER ASWELL
2. In that unit’s Init field (here we go again), type this exec “camera.sqs”

3. Preview the mission. You will notice that you are not playing the player. That is correct – you’re “playing” the camera

Image 2.8 – Placing a unit with the *this exec “camera.sqs”+ command (upper slide), and camera.sqs in action (lower slide)

P a g e | 21

4. Use this table of camera controls to move the camera around, and when finally statisfied with the shot, press the LMB
ARMA II CAMERA.SQS CONTROLS

Movement W, A, S, D camera movement Q, Z increase/decrease height Shift+WASD fast moving

Zooming and tilting/panning Num +, Num - zoom in/out Num 4, 6 pan left/right Num 8, 2 tilt up/down

Other controls F target nearest unit L toggle crosshair Del floating mode on/off

ArmA II: OA only controls N swap between normal
vision/NV/TI WB/TI BW

1-9 select post-processing for
camera

Mousewheel up/down
modify focal lenght

5. Then use Alt+Tab to minimize the game, open Notepad and use Ctrl+V to paste the camera information
6. You can go back into the game, or further edit the script, and when happy save it as All files – yourscenename.sqs

Image 2.81 – A finished scene script, called “sceneintro.sqs” in my case

How to use the ArmA II .sqs scripting language?

titlecut [" ","BLACK IN",1]
_camera = "camera" camcreate [0,0,0]
_camera cameraeffect ["internal", "back"]

This is the beginning of your script. It issues the command for a fade-in from black and prepares you for the camera commands

;=== 17:56:37
_camera camPrepareTarget [98774.93,29030.26,-14429.71] YOUR CAMERA TARGET’S POSITION

_camera camPreparePos [3826.70,1091.87,39.24] YOUR CAMERA’S POSITION

_camera camPrepareFOV 0.700 THE AMOUNT OF ZOOM (SMALLER NUMBER = MORE ZOOM)

_camera camCommitPrepared 0 THIS IS THE LENGTH OF THE CAMERA’S PAN INTO THE NEXT SCENE. 0 = NO PAN

@camCommitted _camera LEAVE THIS AS IS

This is what you will paste from the camera.sqs from in-game. It contains information about the cam’s position and zoom

~5

This is the command that says to the game “wait this long before you cross to the next camera position”
When you save the script, you will want to move it to (Documents  ArmA 2  missions  YourMissionName.Map)
You will see the effects of my “sceneintro.sqs” script in the following video

P a g e | 22

„scene.sqs“ demonstration video

Video 1 - In this video you could see the Intro part of my mission. It took me only a couple of hours to create and fine-tune it so

it shouldn't take any more time from you, except when creating more complex stuff. You can also hear the background music is

customized (see section 3, chapter 2: Custom Background Music). For those who want to know what song that was, it's „Fortunate Son“

by Creedence Clearwater Revival

P a g e | 23

Advanced use of the Editor

Practical use of triggers and syncing
You’ve heard enough about all this in theory, but you have to put it into practice. In order to make two things happen at once,
you will need to synchronize them. This enables you (in combinations with triggers) to create special waypoints which are
essentialy Move type waypoints, but in-game are displayed with a WAIT message under the marker. Here’s how you do it:

1. Create a trigger and set it to OPFOR and with Present conditions
2. Create a player unit and a Move waypoint about 5 meters from it
3. Create another Move waypoint somewhere else and synchronize that waypoint with the trigger
4. Create an OPFOR unit and set a Move waypoint for it inside the trigger’s are of effect
5. Preview the mission

You will probably notice that you first had to Wait at the first waypoint until the OPFOR unit came up to the trigger, and just
then your other waypoint got online. Try another example of practical synchronization. Let’s say you need some guys to move
somewhere and when that, two guys join them. How do we make it? Here are the steps

1. Create two Men, one a player, rank Private, one non-playable, rank Sergeant
2. Create two Move waypoints for them
3. Create two more Men, one rank Private, one Sergeant, both non-playable and set them as a separate group
4. Create two Move waypoints for them, too
5. Synchronize their first waypoint with the first group’s last waypoint
6. Preview the mission

Notice that the “waiting” group (the second one) will wait until the first group accomplishes their second objective. They will
then begin to move out to whatever their objective is

Image 3 – Here you can see the editor view of syncing the first and last waypoints of two different groups

Last waypoint – Group 1

 First waypoint – Group 2

P a g e | 24

Inserting custom background music

As you’ve seen in Video 1 on page 22, it is possible to insert custom music and sounds into ArmA II using the game’s editor and
some more supporting text files

1. Inside your mission folder, create a new text file
2. In that text file, type

class CfgMusic
{
tracks[]={yourmusicname };

class yourmusicname
{
name = "yourmusicname"; //The Name seen in the Editor
sound[] = {"\music\yourmusicname.ogg", db+0, 1.0};
};

};

This will make your music track
NOTE: THE EDITOR ONLY ACCEPTS .OGG FILES (you can convert files to .ogg using format factory, it’s free) appear in your
Effects box of triggers and waypoints under the name yourmusicname defined by the name = "yourmusicname"; line in the
code (the 7th line in the code above).
In order for this to work properly, you will need a music folder inside your mission folder

Image 3.1 – My mission folder (00Riverlines.MBG_nam) with the music folder and description.ext file included

3. Save that file as file type: All files, file name: description.ext

www.formatoz.com

P a g e | 25

Calling in predefined CAS

Image 3.2 – The upper slide shows the correct unit/trigger/waypoint setup for predefined CAS. The lower one displays the Map
view when in-game after that kind of setup

P a g e | 26

What have we done in that image? This is the correct process for enabling predefined CAS:

1. Firstly, create an enemy unit to be destroyed by CAS and a friendly Air unit to execute the CAS order
2. Create a Move waypoint for that unit to Wait on that position until the CAS is requested
3. Then create a waypoint for the same unit to Destroy the enemy unit
4. Last but not least, create a trigger (see below) to issue the order, and sync it with the waypoint Move (Wait)

Predefined CAS trigger settings

Activation Radio <letter> Example: Radio Alpha
Name Close Air Support
Type Switch
Effect > Anonymus > Radio (18 s) Just for an extra effect. You can make your own custom sounds using a similar principle as
with custom tracks, only adapted for sounds, like this:

class CfgSounds
{
sounds[] = {yoursoundname};

class yoursoundname
{
name = "yoursoundname.ogg "; // The Name seen in the editor
sound[] = {\sound\ yoursoundname, 1, 1.0};
titles[] = {};

};

How to use predefined CAS triggers in-game

1. Open the Map by pressing the M button
2. Select the Close Air Support option on the Radio Menu
3. Wait for destruction of the target

NOTE: THIS TECHNIQUE MAY OR MAY NOT WORK IN ALL CASES. IT IS ALSO POSSIBLE ONLY ON TARGETS DEFINED IN THE
EDITOR; NO LASER TARGET MARKING OR SIMILAR ACTIONS. IT CAN ALSO BE USED FOR EXTRACTIONS

Roko
Typewritten Text
If you don't want your air asset to be hurt by incoming ground fire as it performs close air support actions,
use this code in it's initialization field
	this addEventHandler ["HandleDamage", {false}];

P a g e | 27

Image 3.21 – This is how predefined CAS looks in-game

P a g e | 28

Calling in Artillery/CAS on marked targets

To enable calling in CAS and Artillery on laser designated targets, make sure you added a SOFLAM (laser target designator –
see classnames at the end of the manual) to your player, and do this:

Creating a SecOp module in the editor

1. Create a SecOp manager Module and name that module
2. Synchronize the SOP manager to your player unit
3. Also, if you don’t want HQ to give you Secondary Objectives, type this in the Init field of the SOM Module

this setVariable *“settings”, **+, true, nil, nil, false++;

SecOp will be always activated for this mission

Creating CAS in the editor

4. Create a trigger near the player unit
5. Set Activation Radio <letter>, enable Repeadetly NOTE: THIS WILL ENABLE THE CAS FOR THE ENTIRE MISSION
6. Condition Present
7. Select Timeout, type None, text Close Air Support,
8. Write this down in the On Act. field

[["tactical_airstrike"], player] call BIS_SOM_addSupportRequestFunc;

9. Preview the mission

Calling in CAS and Artillery in-game and marking targets

1. Open the Map to view the Radio
2. Select Close Air Support
3. Use the Command mode (key: SPACE) to locate Communication > Support > CAS/Artillery
4. You can now use the SOFLAM to mark targets (CAS) or Map view to mark targets (Arty)

Creating Artillery in the editor

1. Create an Artillery module and name it NOTE: THE UNIT MUST BE FAR ENOUGH FROM THE TARGET AREA AND CLOSE
ENOUGH TO IT TO BE ABLE TO SHOOT – IF A TARGET IS OUT OF RANGE, THE BATTERY WILL NOT OPEN FIRE

2. Create one or more artillery units (e.g. a Static M119 US unit) – you can also use the Virtual Arty Module
3. Name that unit
4. Synchronize the module with that unit
5. Create a trigger. Use the same settings as for CAS, except name it Artillery strike
6. Write this down in the On Act. field

[["artillery_barrage"], player, [[]]] call BIS_SOM_addSupportRequestFunc;

7. Preview the mission

P a g e | 29

Advanced use of modules

Commands exist to allow you to customize module behavior. The most important ones are listed here

Artillery module

If there are large obstructions in the way of your artillery shells, you will find the Artillery Spawn Mode useful, which spawn
the shells directly over their targets after the TOF (Time of Flight) has elapsed. Write this in the Init field of the module

[_battery, true] call BIS_ARTY_F_SetShellSpawn;

When using Virtual Artillery, you will want to select the type of the vehicle (default is M119). Write this in the Init field of the
VirtArty module

[_virtualPiece, "desiredvehicle"] call BIS_ARTY_F_SetVirtualGun;

ALICE module

In order to set the towns in which the civilians spawn, use this code. The array (after “townlist”,) can be a game logic location
([bis_loc_acityc_cityname]), position and radius ([position this, desiredradius]) or trigger (desiredtrigger)

this setvariable ["townlist",[bis_loc_acityc_cityname,[position this,desiredradius],desiredtrigger]];

If you want to place an Init code for each civilian spawned, type this into the code box for the ALICE module

[bis_loc_acityc_kozlovka,"ALICE_civilianinit",[{_yourcodehere}]] call bis_fnc_variablespaceadd;

And in order to determine the civilian population, write this down into the Init box

BIS_alice_mainscope setvariable ["civilianCount","round (2*sqrt%1)"];

where %1 is the no. of doors 500 meters away from the location

ACM module

If you are using Ambient Combat, create an init.sqf in your mission folder and write this down inside

waitUntil {!isNil {BIS_ACM getVariable "initDone"}};
 waitUntil {BIS_ACM getVariable "initDone"};
 [] spawn {
 waitUntil {!(isnil "BIS_fnc_init")};
 [1, BIS_ACM1] call BIS_ACM_setIntensityFunc; //Sets the intensity of the ACM
 [BIS_ACM1, 400, 700] call BIS_ACM_setSpawnDistanceFunc; // Spawn radius of the AC
 [["BIS_TK_INS"], BIS_ACM1] call BIS_ACM_setFactionsFunc; // This tells the ACM which faction of units it will spawn
 [0, 0.7, BIS_ACM1] call BIS_ACM_setSkillFunc; // This determines what the skill of the units
 [0.2, 0.5, BIS_ACM1] call BIS_ACM_setAmmoFunc; // This sets the amount of ammo they spawn with
 ["ground_patrol", 1, BIS_ACM1] call BIS_ACM_setTypeChanceFunc; // If you want ground patrols then leave it as 1
 ["air_patrol", 0, BIS_ACM1] call BIS_ACM_setTypeChanceFunc; // If you don’t want air patrols leave it as 0
 [BIS_ACM1, ["TK_INS_Group", "TK_INS_Patrol", "TK_INS_AATeam", "TK_INS_ATTeam", "TK_INS_Technicals",
 "TK_INS_MotorizedGroup"]] call BIS_ACM_addGroupClassesFunc; // This determines which exact units will spawn
 };

P a g e | 30

HALO jumps

Write this down in the Init field of a unit or On Act. field of a trigger/waypoint

[player,halojumpheight] exec "ca\air2\halo\data\Scripts\HALO_init.sqs";

and if deploying from an aircraft, write this down into the aircraft’s Init field

this setpos [getpos this select 0, getpos this select 1,(getpos this select 2) +halojumpheight]; this flyInHeight halojumpheight

where player can also be the name of an AI unit that will deploy the chute at 200 meters.

NOTE: IF DEPLOYING FROM AN AIRCRAFT, THERE IS A HIGH POSSIBILITY THAT THE UNITS WILL ISSUE A “BOARD THAT
AIRPLANE” ORDER ON EXIT. CREATE A TRIGGER TO SWITCH THEM BACK TO THEIR ORIGINAL OBJECTIVE. ALSO NOTE THAT AI
UNITS WILL PERFORM UNEXPECTED MANOUVRES WHILE IN FLIGHT, AND BE PREPARED TO USE WASD WHILE FLYING

Image 3.5 – A HALO script execute code in a unit’s Init field. This sends the player, and unit1 and unit2 on a HALO jump

Image 3.51 – HALO jump landing with AI units

P a g e | 31

AttachTo and SetPos commands

These are the commands you will hear a lot of talking about, and also one of the most useful commands because they allow
you to select an exact (x (east-west), y (south-north), z (height)) position for an object (setPos) or attach it to another object
(creating an AC-130) (attachTo)

setPos command

There are three types of using the setPos command

1. offsetting

object1 setPos [getPos desiredobject select 0, getPos desiredobject select 1, (getPos desiredobject select 2) +offset]

this changes the Z position of the object1 unit to the Z position of desiredobject, plus offset

2. selecting

object1 setpos [getPos desiredobject select 0, getPos desiredobject select 1, value]

this changes the Z position of the object1 unit to value and the other positions to the position of desiredobject

3. attaching

NOTE: THIS IS NOT THE SAME TYPE OF ATTACHING AS THE ATTACHTO COMMAND. IT ONLY SELECTS THE SAME POSITION AS
ANOTHER OBJECT, BUT DOES NOT PHYSICHALLY CONNECT THEM

object1 setPos (getPos desiredobject)

this changes the position of object1 to the position of desiredobject

Explanation of values used:

object1 – the object to be moved, can be player (in that case the player’s unit is moved)
desiredobject – the object that object1 is moved to (can be object1, in that case the position remains unchanged)
offset, value – integer (number) values, they determine the x, y, or z coordinates

Example of offsetting
player setPos [getPos player select 0, (getPos player select 1) +50, getPos player select 2]

this offsets the Y value of the player unit’s position by +50

Example of selecting
player setPos [50, getPos player select 1, 2]

this sets the X position of the player unit to 50 and the Z value to 2, while the Y value remains unchanged

Example of attaching
player setPos [getPos object1]

this sets the position of the player unit to the position of object1

P a g e | 32

attachTo command

This command may seem to be simpler to use, but it has an instance of the setPos command implemented in the shape of the
offset box ([value, value, value]) to gain some interesting effects. You can use the setDir command to rotate the attached
object relative to the attached-to object’s heading

object1 attachTo [desiredobject,[value, value, value]];

NOTE: THE POSITION ARRAY WORKS SAME AS IN THE SETPOS COMMAND (NOT TESTED)

this attaches object1 to desiredobject at positions X = value, Y = value, Z = value relative to the position of desiredobject

detach command

object1 can be detached from desiredobject using the detach command like this

detach object1

NOTE: WHEN USING THE ATTACHTO COMMAND YOU WILL GO THROUGH A LOT OF TRIAL AND ERROR BEFORE YOU FIND
OUT THE CORRECT OFFSET FOR PLACEMENT OF THE OBJECT WITHOUT GETTING STRANGE SHAPES, AS SEEN IN IMAGE 3.61

Image 3.6 – The setPos command enables you to spawn units in various locations like rooftops, buildings, balconies, even thin
air, as can be seen here

We can see in Image 3.6 that the player is falling from a high altitude. This was achieved with the setPos command. This is how
it looked like

player setPos [getPos player select 0, getPos player select 1, (getPos player select 2) +1000]

that way the player was spawned on an altitude of 1000 meters

P a g e | 33

Image 3.61 – The attachTo command used on an M119 artillery piece and an AH-64D Apache helicopter

P a g e | 34

Briefings

In order to have a complete mission, you’ll need a briefing. To create a briefing you will need the following external text files

- init.sqf
- briefing.sqf

Init.sqf

In init.sqf, type

execVM "briefing.sqf";

if(true) exitWith ();

this executes the briefing.sqf file once the mission is ran

Briefing.sqf

The easier way to create briefings is to download A2B Editor (available on armaholic) and use it to create the briefing.sqf with
all the information you need (it creates templates to edit). That’s what we’ll cover here

Creating the basic entries

The diary entries the campaign missions have are as follows
- Briefing
- Situation
- Mission
- Execution
- Support

In order to add them into A2B, use the Create Diary Record button

Image 3.7 – Adding a Briefing diary record that will be displayed in the Notes section of the Map view and mission briefing

After that you have to change any key points in that text into Markers that will show the positions of objectives when pressed.
Those are the markers you’ve set up in the Editor while creating your mission. Also, create Markers for your Tasks (objectives)
so that you can determine whether the mission is complete.

http://www.armaholic.com/page.php?id=7092

P a g e | 35

Add markers into A2B by using the Add marker button in the createDiaryRecord window

Image 3.71 – The Add marker dialogue

To successfully add the marker, you will have to input the Name of the Marker that is stated in the Editor. If you haven’t
placed any markers in the mission, now would be a good time. In the Name field of the marker, write down a name. Then, in
the A2B editor under Name of the marker: type your marker’s name from the Name field

Image 3.72 – The Briefing entry with the markers added

In order to keep things organized, add line breaks (basically like pressing Enter (Return) on the keyboard) by pressing the Add
line break button

P a g e | 36

After creating all of your diary entries, add Tasks by pressing the Create Task button. This enables you to create objectives
that have to be completed in order to end the mission in victory.
In the createSimpleTask dialogue under Name of the task: write the name (e.g. obj<number>),
under Task assigned to the unit: type player and under Short description of the task: state the objective in only one sentence
or less

Then press the Set Task Description dialogue to further describe the task. Repeat the naming step and then write down the
title under Title of the task: and a long description under Description of the task: and a waypoint description under WP
description of the task:

After completing all that you have to associate the task to a marker, and you’ll do it by using the Set Task Destination button.
Fill in the form for the Name and then in the Marker name: field type the name from the marker’s Name field in the Editor
and press the Set button once more

To finalize the process, click Set Current Task, under Name of the unit: type player and under task name type your first task’s
name (recommended: obj1)

Then you have to save the briefing.sqf file. Do it by selecting File  Save As…, naming the file briefing and selecting your
mission folder. (Documents  ArmA 2  missions  YourMissionName.Map)

P a g e | 37

Image 3.73 – Creating a task

P a g e | 38

This is how the Map view of a mission with a completed briefing looks like (mission: Vantage Point by AFOF_Murdock (WIP))

This is how a finished mission looks like when viewed from the Editor

P a g e | 39

Scripting, scripts and codes

Useful and used codes
This is a list of ALL used codes in this manual

INIT (UNITS)

helicopter flyInHeight height (see Init field)
helicopter land landing mode – landing modes: “land”, “get out”, “get in” (see Helicopter Control)

removeAllWeapons unit (see Unit gear control)
unit addWeapon weapon
unit addMagazine magazine

unit moveInCargo vehicle (see Boarding vehicles)
unit moveInGunner vehicle
unit moveInDriver vehicle

unit exec script – script is a string value (“script.sqs”)
unit exec “camera.sqs” (see Camera scripting)
unit exec “scene.sqs”

SCRIPT

“scene.sqs” contents (for cutscenes):
titlecut [" ","BLACK IN",1]
_camera = "camera" camcreate [0,0,0]
_camera cameraeffect ["internal", "back"]
~[number]
[camerapositioninformationhere]
~[number]
player cameraeffect ["terminate",""back"]
camdestroy _camera
titleCut ["", "BLACK OUT"]; titleFadeOut 4
endMission "END1";
Exit;

EXTERNAL TEXT FILES

“description.ext” contents (for custom music):
class CfgMusic
{
tracks[]={yourmusicname };
class yourmusicname
{
name = "yourmusicname"; //The Name seen in the Editor
sound[] = {"\music\yourmusicname.ogg", db+0, 1.0};
};
};

P a g e | 40

“description.ext” contents (for custom sounds):
class CfgSounds
{
sounds[] = {yoursoundname};
class yoursoundname
{
name = " yoursoundname.ogg "; //The Name seen in the editor
sound[] = {\sound\ yoursoundname, 1, 1.0};
titles[] = {};
};

“init.sqf” contents (for customized ACM module):
waitUntil {!isNil {BIS_ACM getVariable "initDone"}};
 waitUntil {BIS_ACM getVariable "initDone"};
 [] spawn {
 waitUntil {!(isnil "BIS_fnc_init")};
 [1, BIS_ACM1] call BIS_ACM_setIntensityFunc;
 [BIS_ACM1, 400, 700] call BIS_ACM_setSpawnDistanceFunc;
 [["BIS_TK_INS"], BIS_ACM1] call BIS_ACM_setFactionsFunc;
 [0, 0.7, BIS_ACM1] call BIS_ACM_setSkillFunc;
 [0.2, 0.5, BIS_ACM1] call BIS_ACM_setAmmoFunc;
 ["ground_patrol", 1, BIS_ACM1] call BIS_ACM_setTypeChanceFunc;
 ["air_patrol", 0, BIS_ACM1] call BIS_ACM_setTypeChanceFunc;
 [BIS_ACM1, ["TK_INS_Group", "TK_INS_Patrol", "TK_INS_AATeam", "TK_INS_ATTeam", "TK_INS_Technicals",
 "TK_INS_MotorizedGroup"]] call BIS_ACM_addGroupClassesFunc;
 };

“init.sqf” contents (for briefings):
execVM "briefing.sqf";

if(true) exitWith ();

P a g e | 41

INIT (MODULES)

this setVariable *“settings”, **+, true, nil, nil, false++; (see Calling in Artillery/CAS on marked targets)
[_battery, true] call BIS_ARTY_F_SetShellSpawn; (see Advanced use of Modules)
[_virtualPiece, "desiredvehicle"] call BIS_ARTY_F_SetVirtualGun;
this setvariable ["townlist",[bis_loc_acityc_cityname,[position this,desiredradius],desiredtrigger]];
[bis_loc_acityc_kozlovka,"ALICE_civilianinit",[{_yourcodehere}]] call bis_fnc_variablespaceadd;
BIS_alice_mainscope setvariable ["civilianCount","round (2*sqrt%1)"];

TRIGGERS (ON ACT.)

[["tactical_airstrike"], player] call BIS_SOM_addSupportRequestFunc;
[["artillery_barrage"], player, [[]]] call BIS_SOM_addSupportRequestFunc;

VARIOUS COMMANDS

[player,halojumpheight] exec "ca\air2\halo\data\Scripts\HALO_init.sqs"; (see HALO jumps)
this setpos [getpos this select 0, getpos this select 1,(getpos this select 2) +halojumpheight]; this flyInHeight halojumpheight
object1 setPos [getPos desiredobject] (see setPos and attachTo commands)
object1 setpos [getPos desiredobject select 0, getPos desiredobject select 1, value]
object1 setPos [getPos desiredobject select 0, getPos desiredobject select 1, (getPos desiredobject select 2) +offset]
object1 attachTo [desiredobject,[value, value, value]];
detach object1

P a g e | 42

NOTE: ALTHOUGH ONCE PLANNED, THE CLASSNAMES LISTS HAVE BEEN REMOVED BECAUSE OF THE ENORMUS SPACE

CONSUMPTION. YOU CAN STILL FIND THEM ON THE INTERNET. THEY MAY BE IMPLEMENTED LATER ON

P a g e | 43

Documentation

External links
http://community.bistudio.com/wiki/ArmA_2 Official ArmA 2 wiki
http://community.bistudio.com/wiki/ArmA_2:_Operation_Arrowhead Official ArmA 2 Operation Arrowhead wiki
http://community.bistudio.com/wiki/Category:ArmA_2:_Editing Official ArmA 2 Editing wiki
http://community.bistudio.com/wiki/Category:ArmA:_Mission_Editing Official ArmA Mission Editing wiki
http://community.bistudio.com/wiki/ArmA:_Mission_Editor Official ArmA Mission Editor wiki
http://www.arma2.com/ Official ArmA 2 webpage
http://www.armaholic.com/ ArmAholic webpage (you can find my manual here)
http://forums.bistudio.com/forumdisplay.php?f=92 Official Bohemia Interactive ArmA 2 Editing forum

Credits
Bohemia Interactive Studios (for the game)
PCLiPSE (for the youtube tutorials)
ArmAholic (for being an awesome resource center)
BIS forums (for the knowledge)
BIS wiki (for the knowledge)
ArmAholice (for the knowledge)
AFOF_Murdock (for this manual)

Roko
Typewritten Text
EMSI (for the A2B Editor described in the manual)

Roko
Typewritten Text

Roko
Typewritten Text

P a g e | 44

Please read this appeal

This is an appeal from AFOFMurdock, the creator of this manual, to all of those out there who read

this manual and found it useful; and to those who know all this already, but wanted to see my work:

Please, if you have the time, patience or resources, and think this manual could be expanded, made better, etc., help me out

with the further development of this manual by writing your own short chapters or tutorials to be implemented in this manual.

MS Word (.docx or .doc) format files would be appreciated, but a notepad text (.txt) file will do just fine. I will also be glad if

you've noticed some errors or something is missing to PM me or post about it in the armaholic forums.

Thank you,

yours sincerely,

 AFOF_Murdock

	Contents:
	Basic use of the Editor
	Intermediate use of the Editor
	Advanced use of the editor
	Scripting, scripts and codes
	Documentation

	The interface
	Adding and editing units
	Adding and editing waypoints
	LIST OF WAYPOINT TYPES
	LIST OF FORMATION TYPES
	LIST OF BEHAVIOR TYPES

	Adding and editing triggers
	LIST OF ACTIVATION TYPES
	LIST OF TRIGGER TYPES

	Adding and editing groups
	Synchronizing
	Modules
	Air vehicles control - landing
	Air vehicles control – sum up and results
	Unit gear control
	Boarding vehicles
	Mission editing modes
	A LIST OF EDITING MODES

	Camera scripting
	How to use the ArmA II .sqs scripting language?

	„scene.sqs“ demonstration video
	Practical use of triggers and syncing
	Inserting custom background music
	Calling in predefined CAS
	Predefined CAS trigger settings
	How to use predefined CAS triggers in-game

	Calling in Artillery/CAS on marked targets
	Creating a SecOp module in the editor
	Creating CAS in the editor
	Calling in CAS and Artillery in-game and marking targets
	Creating Artillery in the editor

	Advanced use of modules
	Artillery module
	ALICE module
	ACM module

	HALO jumps
	AttachTo and SetPos commands
	setPos command
	1. offsetting
	2. selecting
	3. attaching
	Explanation of values used:
	attachTo command
	detach command

	Briefings
	Init.sqf
	Briefing.sqf
	Creating the basic entries

	Useful and used codes
	INIT (UNITS)
	SCRIPT
	EXTERNAL TEXT FILES
	INIT (MODULES)
	TRIGGERS (ON ACT.)
	VARIOUS COMMANDS

	External links
	Credits
	This is an appeal from AFOFMurdock, the creator of this manual, to all of those out there who read this manual and found it useful; and to those who know all this already, but wanted to see my work:
	Please, if you have the time, patience or resources, and think this manual could be expanded, made better, etc., help me out with the further development of this manual by writing your own short chapters or tutorials to be implemented in this manual. ...

	Thank you,
	yours sincerely,
	AFOF_Murdock

